
International Journal of Economic Sciences Volume 14, Issue 1 (2025) 108-122

International Journal of Economic Sciences
Journal homepage: www.ijes-journal.orgISSN: 1804-9796

Modeling Sustainable Development of Cryptocurrenciesby a Fractional Pure-Jump Process in DEA Framework
Navideh Modarresi1,*, Moshtag Darvishi2, Shokoofeh Banihashemi1

1 Department of Mathematics, Faculty of Statistics, Mathematics and Computer science, Allameh Tabataba’i University, Tehran, Iran2 Department of Finance and Banking, Allameh Tabataba’i University, Tehran, Iran

ARTICLE INFO ABSTRACT

Article history:Received 25 February 2025Received in revised form11 April 2025Accepted 20 May 2025Available online 28 May 2025

Sustainable cryptocurrency modeling is vital for maximizing both economic andenvironmental benefits amid significant investor interest. This research developsa comprehensive methodology for cryptocurrency selection by holistically inte-grating financial aspects, such as returns and risk, with environmental sustain-ability. To quantify risk and further evaluate cryptocurrency efficiency, we employan ARMA-GARCH model with fractional normal inverse Gaussian (FNIG) innova-tions to forecast Value at Risk (VaR) and expected returns. Subsequently, we applyData Envelopment Analysis (DEA) to identify the most efficient cryptocurrencies,incorporating mining costs and the forecasted VaR as inputs—representing en-ergy cost and risk, respectively—while using the forecasted expected returns asthe output. This approach enables a direct comparison of cryptocurrencies basedon these critical factors. Our findings demonstrate that accounting for the inher-ent stochastic behavior of cryptocurrencies leads to more accurate estimations,and the DEA highlights the essential role of energy costs in selecting efficient cryp-tocurrencies.Keywords:Data envelopment analysis; Frac-tional normal inverse Gaussian; Rel-ative efficiency; Sustainable portfo-lio; Value at risk

1. Introduction
In recent years, authorities around the world have grown increasingly concerned about the energyconsumption and climate impact associated with cryptocurrencies. While estimates of these effectsmay vary, it has been shown that the electric load demand of the Bitcoin network alone could exceed13 gigawatts, resulting in an annual carbon footprint of over 65 megatons of CO2 as of 2021. This levelof energy consumption seems to exceed approximately half of the total estimated power demand of
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all global data centres combined, accounting for about half a percent of global electrical energy use[1]. Many investors overlook the challenges of financial modeling, focusing primarily on the potentialreturns of the digital market. As cryptocurrencies exhibit self-exciting jumps and volatility clustering,they present both opportunity and risks for investors due to the price fluctuations in the market. More-over, the stochastically continuous property of Levy processes, along with stationary and independentincrements, make them well-suited for modeling complex financial phenomena [2]. These models canachieve an appropriate representation of the stylized facts observed in high-frequency data and effec-tively capture the volatility clustering effect, leptokurtosis, asymmetry, and long-range dependencefeatures. Furthermore, they are not adequately addressed by standard autoregressive conditionalheteroskedasticity (ARCH) and generalized ARCH (GARCH) [3] models, particularly when using normalinnovations. Although mixture ARMA-GARCH models with generalized hyperbolic distributions [4] cancapture the fat-tail property, but fail to fully describe the characteristics of high-frequency returns. Inorder to deal with this issue, Sun et al. [5] applied a univariate model covering the stylized facts bytaking the ARMA-GARCH model with fractional stable distributed residuals. In this regard, the sub-ordinator process was defined [6] with a stochastic integral for the Volterra kernel [7] where it wasapplied to the innovations on the multivariate ARMA-GARCH model.Recently, a multivariate ARMA-GARCH model with fractional generalized hyperbolic innovations thatis able to capture the stylized facts was introduced by Kim [8]. He defined the fractional generalized hy-perbolic process where the non-fractional variant is derived by subordinating time-changed Brownianmotion to the generalized inverse Gaussian process. This paper explores a new model for expectedreturn data that is constructed by taking the fractional normal inverse Gaussian (FNIG) innovationson the univariate ARMA-GARCH model. FNIG accounts for asymmetry in the distribution of expectedreturns, effectively models heavy tails, and enhances forecasting performance by providing a supe-rior fit to historical data [9]. By incorporating fractional dynamics, FNIG helps in capturing long-rangedependence, memory effects and makes its structure more resilient to outliers. Given the charac-teristics of our dataset and the specific application requirements, we have selected the FNIG model.Mba et al. [10] utilized the fractional Ornstein–Uhlenbeck driven by a Normal Inverse Gaussian Levyprocess model and demonstrated that the NIG distribution offers the best fit for the log returns ofBitcoin data. In addition, we suggest a new investment strategy that not only enables investors tomanage their portfolio of various cryptocurrencies in terms of risk and returns, but also considerselectric load demand of the assets. This allows investors to construct a portfolio based on efficientassets that align with their preferences. This takes into account the energy consumption required formining cryptocurrencies, which has become a significant concern due to its environmental impact.Moreover, it guarantees that our investment strategy is both financially optimized and environmen-tally sustainable. In order to fulfil this aim, we apply data envelopment analysis (DEA) as a decisionmaking tool, which is a non-parametric approach in operations research and economics for calculat-ing production frontiers [11]. DEA has been widely used in a large range of fields from internationalbanking and economic sustainability to operational management in various sectors. To improve theassessment and management of uncertainties, value at risk (VaR) serves as a risk measure in finan-cial studies and daily risk practices. It quantifies the potential loss of a portfolio over a specified timeperiod with a specific confidence level. Since all inputs and outputs of traditional DEA models are as-sumed to be non-negative, DEA is not applicable to several circumstances, such as analysis of financialstatements. To deal with this, for handling negative inputs and/or outputs, we apply range directionalmodel (RDM), which is an extension of DEA [12]. Responding to the growing demand for optimal in-vestments, Mirsadeghpour et al. [13] evaluated portfolio performance using the DEA method. Theyconsidered appropriate underlying distributions that influence the model’s inputs and outputs, anda comparison of the models’ performance shows that accounting for skewness and kurtosis leads toa more interpretable evaluation of efficiency. In this paper, the inputs of the introduced model are
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the costs of mining and VaR as a risk measure, and the expected return is the only output. By ap-plying DEA to the cryptocurrency market, we can identify the efficient frontier, which represents theoptimal combination of cryptocurrencies that maximizes the expected returns and minimizes the riskssimultaneous. This allows investors to make their portfolio by selecting the cryptocurrencies that lieon the efficient frontier. Useful simulation and parameter estimation methods are provided, and thegoodness-of-fit tests are performed for the estimated parameters.
1.1 Literature Analysis

With the growing prominence of cryptocurrency in various sectors, understanding its researchhas become increasingly vital. Recent efforts have aimed to illuminate emerging trends on emergingtrends and overlooked dimensions within this rapidly evolving field. In this investigation, Alqudah etal. [14] conducted a bibliometric study to examine trends in cryptocurrency research from 2014 to2021. Their analysis highlighted a limited focus on environmental, social, and governance factors re-lated to the sustainability of cryptocurrency investment. These trends included market efficiency andrisk, the rate of adoption, the dominant influence of Bitcoin, the connection between blockchain andsustainability, and investor behavior. While acknowledging the progress made, their main conclusionwas that future academic work should prioritize the environmental impacts of consensus mechanisms,comprehensive sustainability assessments, the role of regulations, and the relationship between sus-tainability and financial performance. This would improve understanding of the long-term viability ofcryptocurrency investments. Building on this, Anyssa et al. [15] specifically investigated the complexlink between the energy consumption of cryptocurrencies and their environmental consequences.The study addressed challenges in integrating the digital market into supply chains, explored the rela-tionship between media attention on environmental issues and cryptocurrency, and noted promisingtrends in sustainability. However, the analysis pointed to major challenges in transitioning to lower-energy cryptocurrencies, driven by the profitability and entrenched infrastructure of leading playerslike Bitcoin. Consequently, a rapid shift driven solely by environmental concerns is unlikely withoutsignificant economic drivers and more extensive changes within the broader ecosystem. Recently,Koemtzopoulos et al. [16] analyzed stablecoins as a potential driver of sustainable development, of-fering environmental benefits, supporting Ethereum’s sustainability efforts, and stabilizing the Bit-coin market. Nevertheless, their critical perspective highlights a crucial gap: while stablecoins showpromise, ensuring the genuine ecological and ethical sustainability of their underlying assets remainsa significant challenge requiring further in-depth investigation. This prevents a definitive judgment ontheir current contribution to truly sustainable finance, despite ongoing advancements in the regula-tion of stablecoins. The novelty of this paper lies in its departure from simply restricting investor accessto popular yet energy-intensive cryptocurrencies. Instead, it proposes an innovative methodology toempower investors in making informed decisions. This approach centers on a DEA model that strate-gically incorporates both risk and optimized energy cost as crucial input variables. Simultaneously,the model considers return as the essential output, thereby enabling a comprehensive evaluation ofcryptocurrency efficiency. This framework helps investors identify the most efficient cryptocurrenciesby considering their risk-return profiles while incorporating the critical aspect of energy consump-tion. This research presents a comprehensive tool that moves beyond basic exclusionary methods,enhancing cryptocurrency valuation and encouraging investment decisions that balance profitabilitywith resource-conscious practices. This innovative use of DEA in cryptocurrency integrates financialrisk and energy efficiency, providing a valuable tool for investors to address the complexities of themarket with a focus on sustainability. The rest of this paper is organized as follows.The structure of the ARMA-GARCH model with FNIG innovations and the corresponding risk measureas the VaR are introduced in section 2. Section 3 is devoted to the data analysis including the esti-
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mation method of the ARMA-GARCH parameters, the Hurst index, and the risk measure VaR. In thissection, we also evaluate the efficiencies of eight top cryptocurrencies. Finally, the conclusion of thepaper is presented in section 4.
2. Methodology

In this section, we employ a methodological framework to analyze financial time series, risk mea-sure, and optimize portfolio selection. The approach integrates advanced econometric models, in-cluding the ARMA-GARCH model enhanced with FNIG innovations, to capture volatility dynamics. Ad-ditionally, a DEA-based model is utilized to construct optimal portfolios while accounting for efficiencycriteria.
2.1 ARMA-GARCH model with FNIG innovations

Financial data often exhibit volatility clustering, a phenomenon effectively captured by GARCHmodels, enabling more accurate risk assessment and forecasting. The GARCH component accom-modates conditional heteroskedasticity, adapting to changes in variance levels, and can incorporateleverage effects. Meanwhile, the ARMA component, with its short memory, complements this byaddressing mean dynamics. The combination of ARMA and GARCH models generally yields more reli-able forecasts, enabling the simultaneous modeling of both the mean and variance of time series data.This dual modeling capability provides a comprehensive understanding of underlying processes andeffectively captures long-range dependence in returns and volatilities. In the context of efficient port-folio management models, the traditional Gaussian assumption can be replaced by the ARMA-GARCHmodel with alternative innovations and risk measures. In this section, we apply an ARMA-GARCHmodel with FNIG innovations and the portfolio risk measure VaR to model the dynamics of expectedcryptocurrency returns. Specifically, we first present the definition of the FNIG process and then in-troduce the univariate model of ARMA-GARCH with FNIG innovations.Let {BH(t), t ≥ 0} denotes a fractional Brownian motion with Hurst index (parameter) 0 < H < 1and {G(t), t ≥ 0} an inverse Gaussian process with tail parameter α > 0 and skewness parameter
β ≥ 0, where 0 ≤ |β| ≤ α. Subordinating the fractional Brownian motion to the inverse Gaussianprocess, we have the new process
X(t)

d
= BH(G(t))

as FNIG process with parameters (H,α, β, δ, θ) where δ > 0 is the scale parameter, θ ∈ R and d
=denotes the equality of finite dimensional distributions. It is shown that the FNIG emerges as thecontinuous limit of a time series with long range dependence and the moments of the process exist.Now, we assume that X be a FNIG(H,α, β, δ, θ) process which is generated by a Z as a NIG(α, β, δ, θ)process. The probability density function of Z is given by

fZ(z) =
αδK1(α

√
δ2 + (z − θ)2)

π
√

δ2 + (z − θ)2
eδ
√

α2−β2+β(z−θ),

where K1 is the modified Bessel function of the second kind of order one.
2.2 ARMA-GARCH model construction

ARMA-GARCH models are commonly used to analyze time series data that exhibits volatility clus-tering and heteroskedasticity [17]. These models combine an ARMA model which captures the au-
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tocorrelation structure in the mean and a GARCH model which captures the volatility clustering inthe variance of the time series. The innovation term in the ARMA-GARCH model represents the un-expected component of it. Different distributions can be used for the innovation term that coversdifferent features, such as fat tails and skewness. In order to focus on the descriptive performanceand risk forecasting performance, we choose the framework of ARMA(1,1)-GARCH(1,1).Let P : 0 = t0 < t1 < . . . < tM = t be a partition of interval [0, t] and
∥P∥ = max{tj − tj−1|j = 1, 2, . . . ,M}.

A one-dimensional discrete-time process {Y (tk), k = 0, 1, 2, . . . ,M} is referred to as a one-dimensionalARMA-GARCH model with FNIG innovations when it is given by the ARMA(1,1)-GARCH(1,1) model asfollows
{

Y (tk+1) = µ+ aY (tk) + bσ(tk)ε(tk) + σ(tk+1)ε(tk+1)
σ2(tk+1) = w + ξσ2(tk)ε

2(tk) + ζσ2(tk)
(1)

where ε(tk+1) = X(tk+1)−X(tk) for k = 0, 1, 2, . . . and Y (t0) = 0 and ε(t0) = 0. Moreover, a, b, ξand ζ are the coefficient parameters of the model with standard normal innovations. This combinationmodel covers the volatility effect, fat tails and asymmetric dependence between elements through theNIG process Z, and describes long-range dependence with the FNIG process X . Because X(tk) canbe approximated as

X(tk) ≈
k−1∑
j=0

KH(k, j)
(
Z(tj+1)− Z(tj)

)
, (2)

where KH(k, j) is the Volterra kernel which is a function used in the definition of fractional temperedstable motion [8]. This kernel is on the domain [0,∞)× [0,∞) with long-range dependence propertywhere, for j ≤ k and H ∈ (0, 1),
KH(k, j) = cH

(
(
k

j
)H− 1

2 (k − j)H− 1
2 − (H − 1

2
)j

1
2
−H

∫ k

j

uH− 3
2 (u− j)H− 1

2du,
) (3)

in which
cH =

(H(1− 2H)Γ(1
2
−H)

Γ(2− 2H)Γ(H + 1
2
)

) 1
2
.

Also, the increment of X(tk) can be represented as
X(tk+1)−X(tk) ≈ KH(k + 1, k)

(
Z(tk+1)− Z(tk)

)
+

k−1∑
j=0

(
KH(tk+1, tj)−KH(tk, tj)

)
(Z(tj+1)− Z(tj)).

(4)

Next, for evaluating the asset performance and selecting a sustainable portfolio, we have to mea-sure the risk based on the ARMA-GARCH model with FNIG innovations. For this, we find the expectedreturn process {Y (tk), k = 0, 1, 2, . . . ,M} for a given discrete time such that t=k.∆t with ∆t = t/Mfor k = 0, 1, 2, . . . ,M . According to the relation (1),
Y (tk+1) = µ+ aY (tk) + bσ(tk)ε(tk) + σ(tk+1)

X(tk+1)−X(tk)

(tk+1 − tk)H

= µ+ aY (tk) + bσ(tk)ε(tk) + (∆t)−Hσ(tk+1)
(
X(tk+1)−X(tk)

)
.
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By the approximation relation of the increments in (4), we have

Y (tk+1) ≈ µ+ aY (tk) + bσ(tk)ε(tk) + (∆t)−HKH(k + 1, k)σ(tk+1)
(
Z(tk+1)− Z(tk)

)
+ (∆t)−H

k−1∑
j=0

σ(tk+1)
(
KH(tk+1, tj)−KH(tk, tj)

)
(Z(tj+1)− Z(tj)). (5)

Let (F(tk)
)
k=0,1,2,...,M

denotes the natural filtration generated by Y . Then σ(tk+1) and the last state-
ment of the above relation are F(tk)-measurable. Furthermore, since Z has stationary increments,we have
σ(tk+1)

(
Z(tk+1)− Z(tk)

)∣∣
F(tk)

d
= σ(tk+1)Z(∆t)

d
= Θ(∆t), (6)

where (
Θ(t)

)
t≥0

is a NIG process.
2.3 Risk measure

To implement the new market model for financial risk management and evaluate the relative effi-ciency of comparable units represented by different assets, calculating VaR is crucial. VaR is a widelyused risk measure that quantifies the financial risk associated with a portfolio or position over a de-fined time frame and a specified confidence level. This calculation provides valuable insights into thepotential losses within a portfolio, enabling informed decision-making in risk assessment and man-agement.Using ARMA-GARCH models, the VaR for the expected return at time tk+1 with information given untiltime tk as (F(tk)
)
k=0,1,2,...,M

at tail probability level δ is defined by
V aRδ

(
Y (tk+1) | F(tk)

)
= − inf{x ∈ R|P

(
Y (tk+1) ≤ x

)
> δ}, (7)

where P
(
Y (tk+1) ≤ x

) is the conditional probability for Y (tk+1) based on the information until time
tk. Thus, the VaR for the ARMA-GARCH model with FNIG innovations can be computed. Using relation(5) and the definition of VaR with respect to filtration (

F(tk)
)
k=0,1,2,...,M

, we obtain
V aRδ

(
Y (tk+1) | F(tk)

)
≈ −µ+ aY (tk) + bσ(tk)ε(tk)

− (∆t)HKH(k + 1, k)V aRδ

(
σ(tk+1)

(
Z(tk+1)− Z(tk)

))
− (∆t)−H

k−1∑
j=0

σ(tk+1)
(
KH(tk+1, tj)−KH(tk, tj)

)
(Z(tj+1)− Z(tj)).

Based on relation (6), the risk measure VaR can be computed as
V aRδ

(
Y (tk+1) | F(tk)

)
≈ −µ+ aY (tk) + bσ(tk)ε(tk)− (∆t)−HKH(k + 1, k)V aRδ

(
Θ(∆t)

)
− (∆t)−H

k−1∑
j=0

σ(tk+1)
(
KH(tk+1, tj)−KH(tk, tj)

)
(Z(tj+1)− Z(tj)).

The VaR represents the maximum potential loss on an investment over a specified period with a givenprobability. It is calculated using the inverse of the cumulative distribution, which quantifies the prob-ability of a specific loss occurring. In this study, the random variable Θ(t) follows a NIG process, whichis a subclass of infinitely divisible distributions. The integral representation of cumulative distribution,with respect to characteristic function, was investigated by Kim et al. [18]. So, the V aRδ

(
Θ(∆t)

) canbe evaluated with respect to characteristic function of Θ(t), which follows NIG distribution.
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2.4 DEA-based portfolio selection models

Data Envelopment Analysis (DEA) is a method for evaluating the relative efficiency of decision-making units. This method is able to consider multiple inputs and outputs simultaneously and pro-vide a clear measure of efficiency, allowing investors to identify which portfolios are performing op-timally relative to others. Traditional DEA model typically assumes that all inputs and outputs arenon-negative. This can be a limitation in many real-world scenarios where negative values such aslosses and costs are present. The range directional model (RDM) has the ability to handle negativedata effectively. In this essay, the efficiency scores of each cryptocurrency are calculated using returnas the output variable and risk and energy cost as the input variables.We assume that there are n different cryptocurrecies where the expected return of each asset is de-fined as Y 1, Y 2, . . . , Y n, and Y j = Y j(tk), k = 0, 1, . . . ,M . For j = 1, 2, . . . , n, V aRδ[Y
j] demon-strates the risk measure of j-th asset and also Cost[Y j] shows the energy consumption of j-th cryp-tocurrencies. Additionally, Y o for o ∈ {1, 2, . . . , n} is considered as an asset under evaluation. Re-garding the negative return values, a directional vector as

g = (RE[Y o], RV aRδ[Y j ], RCost[Y j ])
T (8)

indicates the range of possible improvement. The components of the vector g are
RE[Y o] = { max

j=1,2,...,n
E[Y j]} − E[Y o]

RV aRδ[Y j ] = V aRδ[Y
o]− { min

j=1,2,...,n
V aRδ[Y

j]}

RCost[Y j ] = Cost[Y o]− { min
j=1,2,...,n

Cost[Y j]},

where E[Y o] is the expected return, V aRδ[Y
o] is the risk measure and Cost[Y o] is the energy con-sumption of Y o. This vector represents the direction in which the observed asset or portfolio is pro-jected onto the efficient frontier. For asset under evaluation Y o and the direction vector g, the follow-ing linear model is solved

max α

s.t. E[Y (λ)] ≥ E[Y o] + αRE[Y o]

V aRδ[Y (λ)] ≤ V aRδ[Y
o]− αRV aRδ[Y o]

Cost[Y (λ)] ≤ Cost[Y o]− αRCost[Y o]

eTλ = 1

α ≥ 0, λ ≥ 0,

(9)

where λ = (λ1, λ2, . . . , λn)
T represents the policy of investing in different proportions of cryptocur-rencies and eT is an unit vector. The α∗ as the optimal value of α shows to the inefficiency score ofthe asset under evaluation. Moreover, in conditions of the above problem, Y (λ) = Σn

j=1λjY
j and so

E[Y (λ)] = Σn
j=1λjE[Y j], V aRδ[Y (λ)] = Σn

j=1λjV aRδ[Y
j] and Cost[Y (λ)] = Σn

j=1λjCost[Y j]. Theproblem (9) is inspired by RDM model with three constraints.
3. Data analysis

In this section, we present the characteristics of 7 types of cryptocurrency data sets for analyzingthe expected returns, including Bitcoin (BTC), Ethereum (ETH), Bitcoin Cash (BCH), Lietcoin (LTC), Car-dano (ADA), Dogcoin (DOG), and Ripple (XPR). In the context of fitting an ARMA-GARCH model with
114



International Journal of Economic SciencesVolume 14, Issue 1 (2025) 108-122
fractional normal inverse Gaussian (FNIG) innovations to our data sets, we first determine the modelorder and then proceed to estimate its parameters. Numerous studies have demonstrated that theGARCH(1,1) model consistently delivers superior forecasting results and aligns with daily stock returnseries [19]. Furthermore, several studies have effectively utilized the ARAM(1,1)-GARCH(1,1) model [6,8]. Based on these findings, we choose an order of (1,1) for our model and apply the maximum likeli-hood estimation (MLE) method to estimate its parameters. Using some statistical methods and tests,we forecast the Value at risk (VaR) as a risk measure and also the expected return by ARMA-GARCHmodel.
3.1 Parameter estimation

Now, we estimate the parameters of the expected returns for each 7 currencies by the introducedmodel over the period of 16 May to 4 July, 2024. For this, we employ the following method presentedin [6]. In this setting, we use high-frequency data with 1-hour time steps. In this method, first theparameters of the ARMA(1,1)-GARCH(1,1) model with standard normal innovations are estimated byMLE method under the assumption that
σ2(t0) =

w

1− ξ − ζ
, (10)

where w is the constant and ξ and ζ are the coefficient parameters of the squared volatility of themodel. Estimated parameters of ARMA-GARCH models are reported in Table 1.
Table 1ARMA(1,1)-GARCH(1,1) model with standard normal innovations

ARMA(1,1) BTC ETH ADA XPR DOG BCH LTC
µ 2.70E-05 -3.00E-04 -1.45E-05 -1.78E-05 2.07E-05 -2.70E-04 2.00E-04
a 0.29 -0.62 -0.63 0.13 0.66 0.0183 -0.35
b -0.32 0.56 0.65 0.2 -0.74 0.047 0.27GARCH(1,1)
w 1.14E-06 9.70E-07 1.38E-06 9.90E-07 3.50E-05 2.55E-06 1.20E-06
ζ 0.66 0.86 0.79 0.75 0.66 0.9 0.78
ξ 0.33 0.13 0.2 0.24 0.09 0.05 0.21
As demonstrated, DOG, a type of cryptocurrency, exhibits distinctive behavior. This asset has thestrongest positive autocorrelation in returns with the parameter a in ARMA part of the model 0.66,meaning past positive returns tend to be followed by future positive returns, and vice versa. Addition-ally, DOG has the highest baseline volatility level with a constant variance term w of the GARCH partas 3.50 × 10−5, indicating a higher inherent level of price fluctuations. ETH and ADA exhibit a strongmean-reversion effect in returns, with values of -0.62 for ETH and -0.63 for ADA. Both cryptocurren-cies also display high volatility persistence, as indicated by the ARCH coefficient (ξ) of 0.13 for ETH and0.2 for ADA, alongside the GARCH coefficient (ζ) of 0.86 for ETH and 0.79 for ADA. This indicates thatperiods of high volatility are likely to be followed by more high volatility. In contrast, BCH exhibits thehighest volatility persistence, with a ζ value of 0.9, and demonstrates the least reaction to previousvolatility shocks, as indicated by its ξ value of 0.05. This suggests that sudden and unexpected pricechanges in the past have a reduced influence on its current volatility. BTC, XRP, and LTC exhibit rela-tively persistent volatility, with ζ values of 0.66, 0.75, and 0.78, respectively. They also respond to pastreturn shocks, as indicated by ξ values of 0.33, 0.24, and 0.21, respectively. The key distinction is thatBTC exhibits positive autocorrelation in returns, with an a value of 0.29, whereas LTC demonstrates amean-reversion effect in returns, with an a value of -0.35. The mean coefficients µ are nearly zero formost assets; however, ETH has a value of −3.00 × 10−4, and LTC has a value of 2.00 × 10−4, indicat-ing slight tendencies in their average returns. These differences in the ARMA and GARCH coefficients
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highlight the unique dynamic characteristics of each asset throughout the analyzed period.Next, we extract the residuals ε(tk) for k = 1, 2, . . . ,M using the estimated parameters. Then, theHurst index H is estimated by the rescaled range analysis (R/S) method presented in [20]. The R/S is astatistical measure of variability or fractal rescaled ranges where the adjusted range is divided by thestandard deviation. The Hurst index estimation is reported in Table 2.

Table 2Estimated Hurst index for seven cryptocurrencies
Cryptocurrency Estimated Hurst Index
BTC 0.634ETH 0.587ADA 0.574XPR 0.566DOG 0.5935BCH 0.6LTC 0.567

By the assumption that X = {X(tk)}k=1,2,...,M where X(tk) =
∑k

j=1 ε(tj), we extract Z =
{Z(tk)}k=1,2,...,M as
Z(t1) =

X(t1)

KH(t1, t0)
,

Z(tk) = Z(tk−1) +
X(tk)−X(tk−1)

KH(tk, tk−1)

−
k−2∑
j=0

KH(tk, tj)−KH(tk−1, tj)

KH(tk, tk−1)

(
Z(tj+1)− Z(tj)

)
.

(11)

Given that the estimated Hurst exponent H for each cryptocurrency surpasses 0.5, it can be inferredthat they exhibit long-range dependence. We estimate the parameters of the NIG process {Z(tk)}k=1,2,...,Mextracted in the last procedure. The estimated parameters are reported in the Table 3.
Table 3Estimated parameters of FNIG process for seven cryptocurrencies

BTC ETH ADA XPR DOG BCH LTC
α 6.9 0.1245 5.79 24.014 7.43 5.923 10.77
β -1.27 -0.209 -0.2958 -1.72 0.0717 -0.3821 0.4721
θ 0.0026 0.0034 0.0023 0.0012 0.0013 0.0021 -0.0024
δ 0.0264 0.0251 0.0351 0.0252 0.0698 0.0315 0.0575
Analysis of the NIG distribution fitting results for Z reveals that digital assets display varying riskand return characteristics, highlighting their distinct behavioral patterns. XRP, with the highestα value24.014, has the thinnest tails and a lower probability of extreme outlier events, while ETH, with thelowest α value 0.1245, shows the heaviest tails and a higher risk of unexpected volatility. Regardingskewness, LTC and DOG exhibit positive skewness, potentially indicating a higher likelihood of largergains, though DOG’s skewness is closer to zero. In contrast, BTC, ETH, ADA, XRP, and BCH show negativeskewness, pointing to an increased probability of larger losses, with XRP and BTC having negativeskewness. The location parameter θ is close to zero for most assets, but ETH shows a slight tendency
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towards higher values, and LTC towards lower values. Additionally, in terms of scale δ, representingvolatility, DOG has the highest value 0.0698, indicating the greatest volatility, while ETH and XRP showthe lowest volatility in this set. This analysis highlights that each digital asset possesses a unique risk-return profile, emphasizing the importance of factoring these differences into investment strategies.Finally, we employ the RDM approach, presented in Section 3, as a variation of the traditional DEAmodel that relaxes the assumption of non-negativity of inputs and outputs to measure the efficiencyof each cryptocurrency in terms of risk, energy cost, and expected returns as outputs. Figure 1 presentsa graphical representation of the processes Z and X for XPR.

Fig. 1. The processes Z and X for XPR
To compute the goodness-of-fit of the innovation processes, we apply the Kolmogorov–Smirnov (KS)test that is performed based on the following statistic.
KS = sup

z
|F̂ (z)− F (z)|, (12)

where F̂ (z) and F (z) denote the empirical and theoretical cumulative distribution functions (CDF),respectively. This statistic is calculated for the FNIG distribution with estimated parameters (α, β, θ, δ)and the empirical distribution of the increments Z(tk)− Z(tk−1) for k = 1, 2, . . . ,M .
Table 4Kolmogorov-Smirnov test for different cryptocurrencies

Cryptocurrency KS Statistic p-value
BTC 0.0261 0.3805ETH 0.0371 0.0948ADA 0.032 0.1682XPR 0.0324 0.1571DOG 0.0374 0.0685BCH 0.0371 0.0721LTC 0.0456 0.0133

The p-value associated with the KS statistic quantifies the evidence against the null hypothesis thatthe data originate from the specified theoretical distribution. The KS statistics and p-values are listedin Table 4. Consequently, smaller p-values provide stronger support for rejecting the null hypothesis.
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Fig. 2. The CDF of BTC
Figure 2 presents a comparison of the CDF derived from the FNIG model and the empirical CDF.

Table 5The VaR and expected return of cryptocurrencies
Cryptocurrency VaR E[Y (tk+1)|Ftk ]

BTC -0.0078 1.20E-03ETH -0.0013 3.79E-04ADA -0.0211 0.0153XPR -0.0068 2.14E-04DOG -0.0131 0.0066BCH -0.0197 -2.74E-04LTC -0.0260 9.70E-03

3.2 Forecasting VaR and expected return

Forecasting both VaR and expected return are crucial for risk management and investment deci-sion making. These forecasts provide investors and financial analysts with essential insights into thepotential risks associated with their portfolios and enable them to implement effective strategies tooptimize their investment allocations and manage downside risks.At this point, we forecast a one-hour ahead VaR and expected return using the ARMA-GARCHmodel with FNIG innovation. Following the introduced estimation method, presented in subsection4.1, to measure the amount of risk for each currency, the VaR with one percent confidence level isused. The VaR forecast for each currency along with expected return, is presented in Table 5.To compare the risk measures derived from NIG and FNIG models, we illustrate in Figure 3 that theFNIG model estimates higher VaR forecasts than the NIG model across different confidence levels. Thisis attributed to the slower decay rate of the FNIG distribution’s tail compared to the NIG distribution.The findings derived from Tables 1 to 4 demonstrate alignment with previously published studies,reinforcing the reliability and validity of the model. Specifically, Table 1 underscores the significantand persistent volatility observed within the financial data, reported in prior research. Additionally,
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Fig. 3. Forecasting one-hour ahead VaR for BTC using the ARMA-GARCH model with NIG and FNIGinnovation
the residuals generated by the ARMA-GARCH model exhibit deviations from normal distribution, asdemonstrated in Tables 3 and 4. Furthermore, these residuals display long-range dependency char-acteristics, as outlined in Table 2, consistent with findings reported in prior studies, including [6, 8].This study proposes a novel approach using the RDM concept to identify the optimal cryptocurrency.The model leverages energy consumption per transaction (kWh) and VaR forecasts as inputs, with theexpected return as the only output. Cryptocurrency efficiency results are detailed in Table 7.

Table 6Energy consumption per transaction
Cryptocurrency kWh per transaction
BTC 1173ETH 87.29ADA 0.574XPR 0.0079DOG 0.12BCH 18.95LTC 18.52

The energy consumption per transaction for seven cryptocurrencies is reported in Table 6 fromMoneysupermarket, https://www.moneysupermarket.com/gas-and electricity/ features/crypto-energy-consumption. It details the amount of energy, measured in kilowatts, required to process a singletransaction for each cryptocurrency. The values indicate variations in energy efficiency across differ-ent cryptocurrencies, reflecting their underlying consensus mechanisms and transaction processes.Table 7 presents a comparative analysis of cryptocurrency efficiencies under two distinct scenarios:considering risk alone and incorporating both risk and energy consumption as inputs into the RDMmodel. When evaluating risk individually, ETH and ADA emerge as the only efficient cryptocurrencies,while BCH is deemed the least efficient. However, the inclusion of energy consumption as an addi-tional factor significantly reshapes the efficiency ranking, as illustrated in Figure 4. XRP and DOG, ini-tially rated below one, achieve a perfect score of one in the second scenario due to their lower energy
119



International Journal of Economic SciencesVolume 14, Issue 1 (2025) 108-122
Table 7Comparison of Cryptocurrency Efficiency

Cryptocurrency Efficiency (risk, return) Efficiency (risk, energy, return)
BTC 0.62 0.59ETH 1 0.94ADA 1 1XPR 0.53 1DOG 0.72 1BCH 0.43 0.56LTC 0.57 0.62

consumption. BCH and LTC also demonstrate improved efficiency scores under the second criteria,albeit not as dramatically as XRP and DOG. Conversely, BTC’s efficiency score decreases, maintaininga consistently lower rating regardless of the evaluation criteria. Finally, ADA consistently maintains itsefficient status in both scenarios.

Fig. 4. Comparing efficiency with and without energy consumption
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4. Conclusion
The rapidly growing cryptocurrency industry is coming under increasing investigation due to its sig-nificant energy consumption and related carbon footprint, creating a challenge for global sustainabilityefforts. This study introduces a novel framework to empower investors in selecting cryptocurrenciesbased on their efficiency in managing risk and energy costs simultaneously. To assess cryptocurrencyrisk, the ARMA-GARCH model driven by FNIG innovation is employed, capturing complexities such asskewness and volatility clustering. Efficiency is then evaluated using RDM, incorporating risk and en-ergy consumption as inputs and expected returns as the output. Results indicate that BTC, despiteits market dominance, is inefficient based on risk alone, whereas ETH and ADA are deemed efficient.When factoring in energy consumption, XRP and DOG gain efficiency, highlighting their ability to bal-ance risk, energy use, and returns. Notably, ADA remains efficient across all frameworks, demonstrat-ing favorable risk-return traits with low energy consumption.The conventional ARMA-GARCH framework exhibits a notable limitation in its capacity to effectivelycapture the leverage effect, a critical and asymmetric phenomenon frequently observed in financialtime series. This constraint highlights the need for alternative approaches that can more accuratelyaccount for such dynamics. To overcome this inherent limitation and achieve a more nuanced under-standing of how negative shocks disproportionately impact volatility, future research could explore theadoption of advanced models, such as the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) speci-fication. This approach offers a more robust framework for capturing asymmetries in volatility be-havior. Moreover, to enhance the current model and build upon its foundation, extending it to amulti-dimensional framework is strongly recommended. Such an approach would provide a morecomprehensive analysis, allowing for the simultaneous modeling that are not addressed in the existingframework. This expansion would facilitate the development of a cryptocurrency portfolio optimizednot only for risk and return but also for asset weights, calculated in alignment with their productioncosts. This objective could be realized through the application of a multi-objective optimization prob-lem.
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