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Blockchain integration in microfinance is beginning to reshape the scenario 
of financial inclusion and economic empowerment in emerging markets. To 
support a strategic decision on adoption, the study introduces the Adaptive 
Utility Ranking Algorithm (AURA), a newly established Multi-Criteria 
Decision-Making (MCDM) method to be used in evaluating blockchain-based 
alternatives relevant to microfinance in Malaysia. AURA stands apart from 
traditional MCDM techniques in that it has a distance function that is flexible 
and a normalization scheme that is dynamic by nature, thereby making it 
capable of offering the decision maker more leverage in terms of adaptability 
to actual economic conditions. For demonstrating the methodology, a 
simulated dataset based on eight blockchain-modeled alternatives and six 
criteria considered important in economic performance was constructed. 
These criteria were used for sensitivity analysis; the application of 
comparative evaluation of well-known MCDM methods such as TOPSIS, 
VIKOR, and COBRA; and robustness checks with the simulation methodology, 
all of which helped attest to the reliability of AURA. Even though it was based 
on synthetic data, the study has provided strong conceptual insight into the 
possibility of financial institutions being able to prioritize options from the 
technology perspective under complex economic constraints. Portraying 
AURA as a competitive decision-support tool for technology evaluation in 
microfinance will certainly make an impact. 
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Multi-Criteria Decision-Making; MCDM; 
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1. Introduction 

The decision-making framework of Multiple Criteria Decision Making (MCDM) has existed for 
decades to evaluate various alternatives, including strategy, policy, and choice to solve problems [1]. 
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Generally, the researcher(s) or decision-maker(s) need to find the best alternatives by examining 
multiple criteria in MCDM [2]. In other words, MCDM can also be explained as a process of evaluating 
and selecting the alternatives based on the importance of the criteria on the alternatives [3]. Ati et 
al., [4] stated that the MCDM methods give advantages to the decision-maker(s) because it gives 
more objective decisions and it practical in helping the decisionmaker(s) to rank and select the best 
alternatives. MCDM field can be divided into two categories which are multi-objective decision-
making (MODM) and multi-attribute decision-making (MADM) [5]. MODM involves developing a 
strategy that optimally balances multiple objectives to achieve the decision maker's goals while 
MADM refers to the procedure of choosing the best choice among a predetermined group of options 
based on several criteria. 

Over the years, there have developed many MCDM methods to cope with complex decision 
making issues, with each method having its own distinct way of aggregating and ordering 
alternatives. Classical methods like Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS), VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR), and Simple Additive 
Weighting (SAW) are being used extensively previously until recently. Kaya [6] stated that TOPSIS 
targets the determination of solutions that are near the ideal solution, but far from the worst- 

case scenario and these are among the most regularly used MCDM methods. Other techniques 
such as Multi-Objective Optimization by Ratio Analysis (MOORA), Weighted Aggregated Sum Product 
Assessment (WASPAS) and lately emerging innovations in distance-oriented MCDM, Comprehensive 
Distance-Based Ranking (COBRA) have been developed contributing to significant rises in decision 
making accuracy. The evaluation process in MCDM approaches typically has four steps. The 
procedure is given by (i) determining which criteria and alternatives are relevant for the problem, (ii) 
weighting each criterion based on its importance, (iii) rating individual performance for every option 
on each measure as well as (iv) evaluating every option against these criteria and ranking them based 
on their overall performance measures [7], [8]. Step 2, which is weighting each criterion based on its 
importance, is an important aspect in MCDM even though it is not the main focus in this study. 
Techniques like Entropy, CRITIC, and MEREC are used to extract weights starting from data 
characteristics and being more data driven [9]. Some applications that focus on weight are 
Pythagorean Neutrosophic Method Based on the Removal Effects of Criteria (PNMEREC) [10], and 
also integration of objective weight in material selection [9]. Steps 3 and 4 are mainly discussed in 
this study. We can say that it is one of the most critical and difficult processes in a solution of MCDM 
problems, as it influences the accuracy and reliability of a solution, since we evaluate individual 
performance for every alternative and aggregate their overall ranking. 

The approaches of MCDM have evolved quite considerably, to include such innovations as data-
driven models, fuzzy-based schemes, and hybrid techniques to enhance decision-making efficiency 
and flexibility in practice application [11]. Applications in MCDM has grown to different industries, 
one of which is business and management such as MCDM model for personnel selection in tourism 
sector [12], textile supply chain management [13], and selection of an optimal ERP software in 
organization [14]. Apart from that, the MCDM is broadly used in engineering and logistics industries. 
For example, MCDM techniques for improvement sustainability engineering processes [15], Selection 
of Warehouse Location with Octagonal Neutrosophic Application [16], and MCDM methodology to 
logistics location problems [17]. One area in which MCDM is an emerging field in safety and security 
is that it uses structured decision-making procedures to enhance security procedures and safety 
measures in a wide range of situations. MCDM methods support public security [18], construction 
safety [19], analysis of safety transport system [20], and security forces operations [21]. All these 
developments in MCDM lead to the emergence of trends. 
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Emerging trends in MCDM as technology develops and the decision context grows more complex, 
are emerging trends in MCDM that respond to the environment of decision-making tendencies. To 
make them more useful and more effective in several areas, MCDM techniques are being modified 
and combined with new technologies. As the world continues to become digital, the use of blockchain 
technology and IoT is gradually introduced using MCDM techniques to deliver dynamic and real-time 
decision making and increases of big data analytics [22]. Improved decision making is facilitated by 
this integration, particularly in such areas as environmental management and health care. In the crisis 
of COVID-19 pandemic, when resources needed to be maximized and wise choices to be made, 
MCDM techniques were applied and proved themselves applicable in fast paced, high stakes 
situations [23]. In addition, the creation of hybrid models such as m-polar fuzzy soft expert sets has 
been developed to solve tricky decision-making situations that involve various experts and criteria 
[24]. Given that new methods are being developed every few months, it is difficult to identify the 
exact extent of such MCDM approaches contained in literature, although there are over fifty of such 
approaches. However not every approach is taken up by researchers and professionals. The 
applicability of every approach depends on, how well it fits a given problem and resources required 
that include time, money, and human experience. Despite these advances, there are apparent 
limitations of current MCDM methods with regards to their complexity, computation burden, and 
the inability to normalize results flexibly enough. For example, COBRA uses two distance formulas, 
Euclidean and Taxicab, complicating the process further. Furthermore, many classical methods 
provide the best ideal solution as strictly optimal either maximum or minimum value, which may not 
be observed in real world data sets where ideal value lies in the middle.  

Considering this gap to understand how technology or application can support the cross-cultural 
processes of value formation, this research suggests a new approach, the Adaptive Utility Ranking 
Algorithm (AURA). AURA is the target of reducing the computational steps in the pattern matching 
during decision making, the use of a single distance measure instead of a combination of them, and 
adoption of a flexible normalization that allows the ideal solution to be dynamically searched in the 
data range. This improves the flexibility and reliability of the method in real-world decision-making 
situations. The focal point of this work is the ease by which the aggregation and ranking processes in 
MCDM will be simplified without sacrificing accuracy of decision outcomes. AURA also increases the 
objectivity and clarity of distance-based ranking approaches and makes the latter both effective and 
applicable for practitioners working in complex decision environments. 

The remainder of this paper is organized as follows. Section 2 discusses the literature review of 
current MCDM approaches. Section 3 presents an introduction to the proposed AURA method, 
presenting its conceptual framework and algorithmic steps. Section 4 presents computational 
analysis such as numerical case study, sensitivity analysis, and comparison with other established 
MCDM methods. Finally, Section 5 summarizes the paper and presents possible directions for further 
research. 
 
2. Literature Review of MCDM methods  

The MCDM Method is an important tool for dealing with complex decision-making problems 
involving multiple and often conflicting criteria. These methods have evolved significantly over time, 
combining both traditional and modern methods to improve decision-making processes across 
multiple fields [17]. The traditional methods can be classified into different groups according to 
similar characteristics such as scoring, distance-based, pairwise comparison, outranking, utility or 
valuate, and others [25]. Table 1 presents numerical grouping of MCDM methods, and it shows some 
of the MCDM methods within their groups.  
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Table 1 
MCDM Methods 

MCDM Group MCDM Method Acronym References 

Scoring 

“Simple additive weighting” SAW [26] 

“Weighted Sum Model” WSM [27] 

“Weighted Product Model” WPM [28] 

“Complex Proportional Assessment” CORPAS [26] 

Distance-
Based 

“Technique for Order of Preference by Similarity to Ideal 
Solution” 

TOPSIS [29] 

“VIšeKriterijumska OptimizacijaI Kompromisno Rešenje” VIKOR [30] 

“Multi-Objective Optimization by *Ratio Analysis (plus the full 
MULTIplicative form)”  

(MULTI)MOORA [31] 

“Weighted Aggregated Sum Product Assessment” WASPAS [28] 

“Comprehensive Distance-Based Ranking” COBRA [32] 

Pairwise 
Comparison 

“Analytic Hierarchy Process” AHP [33] 

“Analytical Network Process” ANP [34] 

“Measuring Attractiveness through a Categorical-Based 
Evaluation Technique” 

MACBETH [35] 

“FUll Consistency Method” FUCOM [36] 

Outranking 

“Preference Ranking Organization METHod for Enrichment of 
Evaluations” 

PROMETHEE [37] 

“ÉLimination et Choix Traduisant la REalité” ELECTRE [38] 

“Multi-Attributive Border Approximation area Comparison” MABAC [39] 

“Indifference Threshold-based Attribute Ratio Analysis” ITARA [40] 

Utility/Valuate 
“Multi-Attribute Utility Theory” MAUT [41] 

“Multi-Attribute Value Theory” MAVT [41] 

Others “Quality Function Development” QFD [42] 

 
Penadés-Plà et al., [25] mentioned that the most basic MCDM techniques are the scoring 

techniques.  Their foundation is evaluating the options using basic mathematical concepts. The basic 
concept behind the distance-based method is to calculate the distance between every alternative 
and a specific point. The pairwise comparison methods help obtaining the weight of the different 
criteria and compare alternatives with respect to a subjective criterion. Establishing a preference 
relation on several alternatives that shows the level of dominance among them is the basis of 
outranking methods. The utility methods define expressions that determine the degree of 
satisfaction of the criteria.  

The method created in this study belongs to the distance-based MCDM methods like TOPSIS, 
VIKOR, MOORA, WASPAS, and COBRA, special attention is given to these methods among the ones 
mentioned above.  All these approaches use the same ranking logic, which assesses alternatives 
according to different kinds of distances from a reference alternative. Since SAW, a scoring method, 
is still one of the most widely used traditional MCDM techniques, proving its ongoing relevance and 
applicability, it is also included in the comparative study. 

It is common practice in the field of Multiple Criteria Decision-Making (MCDM) to employ the 
SAW method.  It is applied in various disciplines to evaluate alternatives based on several criteria to 
present an easy way of making decisions. In the SAW approach each criterion is associated with the 
weight, the scores of the alternatives are normalized and weighted sum is calculated to determine 
the preferred alternative. Its simplicity and effectiveness in solving decision-making problems in 
various uncertain environments make this method particularly appreciated. SAW method has proved 
to be successfully implemented in ranked educational institutes using fuzz logic to address the issue 
of uncertainty [43]. Additionally, SAW method is combined with the recurrent neural networks (RNN) 
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to ensure the optimalization of resource allocation among cloud computing domains [44]. The SAW 
method is revised and applied for manufacturing environments [45]. The SAW method, however, has 
its own weakness despite being faulted for ease of use and efficiency. The approach may not fully 
reflect the complexity of criteria relation because it assumes a linear nature of criteria weighting. By 
providing more complex evaluations under an uncertain environment, the SAW method’s expansion 
such as those which invoke fuzzy logic or hybrid methods try to address these defects [46].  

The TOPSIS method ranks alternatives according to their geometric closeness degree to the 
positive-ideal and negative-ideal solutions. The simplest as well as most logically consistent, accurate, 
adaptable, and having the simplest, straightforward mathematical formulation, the given one is also 
the most popular option of the decision-making process. Nevertheless, the technique described by 
TOPSIS has some flaws. The ranking procedure is most literal, though without regard to the relative 
distance importance, a simple addition of distances from the positive and negative ideal solutions. In 
addition, it is not always an optimal strategy to approach the positive ideal solution and thus avoid 
the negative one in making some decision [47]. The TOPSIS approach is applied here in a few 
industries such as in choosing the suppliers that are green [48], selection of the waste to energy 
technology [49], vehicle routing [50], and evaluating the cost effectiveness of the green infrastructure 
[51]. 

Just as in case of TOPSIS method, the VIKOR approach considers the utility, regret, and distance 
from ideal and worst solution to compare options. VIKOR significantly outperforms TOPSIS in 
compromising towards the choice. The incorporation of the advantage rates ensures that the 
alternative in the highest rank is the most like the optimal answer, something which is not always the 
case with the TOPSIS technique [52]. The VIKOR approach has proven numerous applications in many 
areas, recent ones are web-based expert system chatbot [53], medical diagnostic [54], and 
sequencing three-way classification ranking [55]. 

The MOORA approach orders the alternatives in proportion to the square root of distance with 
the reference point. The calculation time using mathematical calculations is reduced by the MOORA 
method [56]. Further, it is easy to learn and to use, consistently provides results, and does not need 
such additional parameters as the parameter 𝑣 in the VIKOR approach [57]. Provided below are some 
of the latest applications of the MOORA method, such as the project selection of the renewable 
energies [58], the decision supporting for the selection of the computer lecturer[59], and the 
determination of the pilot area [60]. 

The WASPAS method is a combination of the weighted sum model and the weighted product 
model. The WASPAS approach is very reliable for process parameter settings based on current data 
combinations, eliminating the need for decision makers to evaluate them further [61]. Its simplicity 
has led to widespread application in fields such as selecting head of study program [62], selecting a 
prospective librarian [63], and designing a used goods donation system to reduce waste 
accumulation [64]. 

Within the field of MCDM, the COBRA MCDM method is a particular technique for evaluating and 
ranking alternatives according to several criteria. The COBRA method combines all the advantages of 
the few other distance-based MCDM methods, eliminating the need to discuss according to which 
distance and in relation to which solution the alternatives should be ranked [32]. After criteria 
weights have been established using another approach, like MEREC, the COBRA method which is 
explicitly stated in the context of choosing an e-commerce development strategy is a Comprehensive 
Distance Based Ranking method that helps with the final evaluation and ranking of alternatives [65]. 
As an application, IVPNS-COBRA approach has been applied to e-commerce development strategies 
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and IT supplier selection considering 5-point and 7-point linguistic scales together with Euclidean and 
Hamming distances to boost the precision of alternative evaluations in decision-making setups [66]. 

As mentioned earlier, these methods are similar in that they rank the alternatives according to a 
distance measure from a reference point.  It is hard to determine which of these approaches is 
superior to the others, or, to put it another way, if it is preferable to utilize Manhattan or Euclidean 
distances or to compute distances from the ideal, anti-ideal, both ideal and anti-ideal, or average 
solutions.  The method to rank the options based on the integration of multiple distance types from 
different reference points has not yet been specified in the literature, which is precisely the research 
gap that this work seeks to address. Therefore, a new distance-based method AURA has been 
developed in this study. AURA was developed to make distance-based MCDM techniques, such as 
COBRA, easier to use and more effective. By proposing a more flexible normalization technique and 
utilizing a single distance formula rather than two, AURA increases computational efficiency without 
reducing accuracy. The most optimal ideal solution can be located anywhere in the intermediate 
range using AURA, which makes it more flexible for real-world decision-making situations than typical 
MCDM techniques that define ideal solutions at extreme values. The primary motivation for 
implementing the AURA approach in this study, in addition to some of the earlier ones, is to make 
the decision-making process more thorough, broader, and more reliable. 

The paper is structured as follows. Section 2 provides the proposed MCDM method. Section 3 
explains computational analysis where it includes numerical example, sensitivity analysis, and 
comparative analysis. The final section summarizes the paper. 

  
3. Proposed Method  

The Adaptive utility Ranking Algorithm (AURA) is a MCDM framework that is developed to 
quantify and compare alternatives based on their performance in multiple criterions. It proposes a 
flexible normalization approach, weighting system and integrated distance-based ranking 
mechanism which enhances computational efficiency without compromising with high accuracy. The 
following describes the AURA procedure in six systematic steps as shown in Figure 1. 

 

 
Fig. 1. AURA Method Flowchart 
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Step 1: Construct the Decision Matrix. 
In AURA method, the decision-making process starts from declaring a set of alternatives 

( 1,..., )i i m=  with respect to criterion ( 1,..., )j j n= , thus the decision matrix is obtained: 

 

11 1

1

n

m mn

a a

A

a a

 
 

=
 
  

, 

 
(1) 

In which n , is the total number of criteria, and 𝑚 is the number of total alternatives taken into 
consideration. The decision matrix is the basis of the analysis. It summarizes raw data or expert 
assessments in many criteria such as the benefits-type, the cost-type, proximity-based measures may 
be applied. Before employing the AURA method, it is necessary to absolutely guarantee that the 
decision matrix is constructed well. This includes validating the data, imputing the missing values, 
and matching scales of evaluation in the criteria. 

By creating this matrix, AURA provides an explicit reference point from which to convert the raw 
data, possibly of varied characteristics into a structured comparable template for the following 
normalization phase. 

Step 2: Normalized the Decision Matrix. 
After that, the AURA method requires normalizing of the decision matrix A  for the relevant 

criteria to be dimensionless and comparable. This normalization removes the effect of different units 
of measurements (i.e. cost, percentage, or ratings) and levels up all the criteria on a standardized 
scale ranging from 0 to 1. The AURA method uses normalization formula based on proximity. Form a 
decision matrix in a normalized table : 

ij m n



  =   , 

where 

(2) 

  
(3) 

Where 
j

k  is a reference value specified by the decision maker for criterion j  and could be a 

target, benchmark, or desired performance. 
j

h  is the range of values for criterion j  where 

( ) ( )( )max min
j j j

h a a= − . This formula normalizes the score depending on how close they are to 

the reference value j
k  with the closest scores to gain higher normalized values. The normalization is 

flexible, as it can accommodate for the best value not necessarily being simply the maximum or the 
minimum but rather in between which is a monetization tool that improves AURA’s ability to be 
applicable in the real world in decision making. As an example, benefit criteria can adopt 

j
k  as the 

highest value, whereas cost criteria can adopt j
k  as the minimum, or a target value that is flexible 

and a coordinated method in dealing with both kinds of criteria. 
The normalized matrix  is hence derived in which each entry indicates the relative proximity of 

alternative to the ideal reference for each criterion, transiting the path to the next step in using 
weights. 

Step 3: Weighted Normalized Decision Matrix. 
After normalization, the relative importance of each decision criterion is integrated into the AURA 

method by determining the weighted normalized decision matrix. This step makes sure that criteria 



International Journal of Economic Sciences 

Volume 14, Issue 1 (2025) 123-146 

130 
 

 

that carry more weightages can impose more weightage on the final ranking. The weighted 

normalized decision matrix   is given: 

j ij m n  


  =   , 

 

(4) 

Where 
j

  is an indicative weight of criterion j , and it suggests its relative importance, with 

1
1

n

jj


=
= . This process leads to the matrix where 

ij
V v =   , 

ij j ij
v  =  . Weights 

j
  are able to 

be determined using methods such as expert judgement, objective techniques such as entropy, or a 
combination of both. Introducing weights into the AURA method is a mechanism for incorporation 
of stakeholder priorities within the ranking method and the fair-relative balance of the importance 
of all criteria in the process. 

Step 4: Determine the Positive Ideal (PIS), Negative Ideal (NIS) and Average Solution (AS). 
On this step, AURA finds three main reference points for each criterion to use as benchmarks 

when measuring proximity of alternatives: 

( )
max

, 1,...,
j ij

PIS S v j n
i

+
= =  = , 

(5) 

( )
min

, 1, ...,
j ij

NIS S v j n
i

−
= =  = , 

(6) 

( )
1 , 1,...,

m

ija i

j

v
AS S j n

m

== =  =


, 
(7) 

Where PIS and NIS both represent the best and the worst and AS reflects average performance 
for weighted normalized value of the alternatives for the criterion j . By computing these three 

benchmark values, AURA plans to compare how far apart each of the alternatives is from the ideal, 
the worst and the average solutions. The tri-benchmark approach provides the method with greater 
flexibility and a greater sensitivity to small differences between the alternatives, particularly in 
complex or uncertain environments. 

Step 5: Compute the Distances from the Benchmark Solutions. 
In this step the AURA method calculates the distance of each alternative from the positive ideal 

solution (PIS), negative ideal solution (NIS) and average solution (AS). This step offers a good 
evaluation of the extent each alternative matches the best, worst, and normal performance, across 
all criteria.  

The distances of alternative i  from a benchmark j
S  are computed as: 

( ) ( )
1

1

pn p

i ij jj
d S v S

=
= − , 

 
(8) 

Where j
S  represents , ,

j j
S S
+ −  and a

j
S . The parameter p  is a distance parameter to keep 

sensitiveness to large deviations in check. Furthermore, AURA applies a correction coefficient   to 
the distances: 

( )( ) ( )( )max min
i i

d S d S = −  (9) 

The correction coefficient is put in the distance formula thus: 

( ) ( ) ( )
2

i i i
D S d S d S= +   (10) 
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By using this scaling, AURA highlights slight and significant differences between alternatives, 
proving that alternatives that are close or far from the benchmarks are meaningfully distinguished. 
This step forms the basis of a strong and detailed ranking process at the final stage. 

Step 6: Rank the Alternatives. 
Finally, AURA scores a comprehensive ranking score. 

( ) ( )( ) ( ) ( )1

2

a

i i i

i

D S D S D S
dR

 + −
 − + − 

=  
(11) 

Where  0,1  , allows the decision makers have the option to weigh the closeness to the ideal 

versus the effect of the average solution. Thus, the alternatives are ranked from lowest to highest 
where a lower value is better. 
 
3. Computational Analysis  

In this section, we present four sub-sections where the first sub-section uses a numerical example 
to demonstrate the way of using the AURA method. Second sub-sections perform sensitivity analysis 
where we examine the impact of varying parameter values on the ranking outcomes and, we do a 
sensitivity analysis on the ranking across weight scenarios. Third sub-sections perform comparative 
analysis to show that AURA methods are valid and congruent with other MCDM methods. The fourth 
sub-section presents a simulation-based analysis to test the stability of the results obtained by AURA. 

 
3.1 Numerical Example 

Six beneficial criteria that are selected to evaluate the performance of blockchain-based models 

in enhancing social capital within Malaysian microfinance systems include transparency 1
C  which is 

valued for its ability to increase openness and accountability in financial transactions, promoting trust 
among stakeholders. Security  is prioritized to ensure strong protection against fraud, data 

breaches, and cyber threats, thereby safeguarding user information and assets. Operational 
Efficiency  is also provided to induce solutions that will minimize the consuming time of a 

transaction and its cost, thus more timely rapid and cost-effective services. Financial Inclusion  

tries to address inequitable access to financial services for minority and under-served classes 
harmonizing with the social purpose of microfinance. Scalability  is important to check whether 

solution can be scaled to be used in different institutions and across geographic locations as well, so 
that the impact is better. Finally, Regulatory Compliance  makes sure that solutions put forward 

comply with Malaysian financial laws and regulations making it easier to deploy them on the legal 
framework in place. 

To assess these criteria, eight blockchain-based microfinance alternatives are examined. These 
include Smart Contracts for Loan Disbursement , which are automated and enforce loan 

agreement without the need for intermediaries. Decentralized Identity Verification , which 

increases trust by means of secure user-controlled identity management. Blockchain-Based Credit 
Scoring , which helps obtain open and unalterable records that facilitate credit rating. 

Cryptocurrency for Microfinance Payments , offering low cost, borderless payments. Peer-to-Peer 

(P2P) Lending on Blockchain , enabling direct lending between individuals without traditional 

banking intermediaries. Tokenized Assets for Collateral , which allows borrowers to use digital 

representations of assets as security for loans. Hyperledger-Based Consortium Model , promoting 
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permissioned networks for collaborative microfinance efforts, and Public Blockchain for Financial 
Transparency , which ensures open access to transaction histories for increased accountability. 

To illustrate the procedure of utilizing AURA method, we use a simple decision matrix in this sub-
section. In this current example criteria are all numerical and of benefit type. However, the proposed 
method can flexibly treat benefit and cost-type criteria because  can be changed as the reference 

value. The weights assigned to the criteria were determined through consultations with stakeholders, 
and Table 2 below summarizes the criteria and their corresponding weights.  

 

Table 2 
The Weights of each criterion for blockchain based 
microfinance 

Criterion Weight ( )j  

1C  0.12 

2C  0.2 

3C  0.16 

4C  0.32 

5C  0.15 

6C  0.05 

 
Step 1: Construct the Decision Matrix. 
Table 3 presents the 8 × 6 decision matrix where there are 8 alternatives and 6 criteria. 

 

Table 3 
The decision matrix of the numerical example 
Alt. C1 C2 C3 C4 C5 C6 

A1 4 8 8 7 9 8 

A2 6 7 7 8 9 6 

A3 7 6 5 8 7 4 

A4 6 6 4 6 5 4 

A5 9 9 4 6 6 7 

A6 7 9 8 8 7 8 

A7 8 8 9 8 6 9 

A8 9 4 7 5 8 6 

 
Step 2: Normalized the Decision Matrix. 
Decision-maker(s) use Equation (3) to find the normalized decision matrix. Decision-maker(s) has 

set reference values  for each criterion as . Table 4 represents this matrix.  
 

Table 4 
The normalized decision matrix of the numerical example 

Alt. C1 C2 C3 C4 C5 C6 

A1 0 0.8 0.8 0.6667 1 0.8 

A2 0.4 0.6 0.6 1 1 0.4 

A3 0.6 0.4 0.2 1 0.5 0 

A4 0.4 0.4 0 0.3333 0 0 

A5 1 1 0 0.3333 0.25 0.6 

A6 0.6 1 0.8 1 0.5 0.8 

A7 0.8 0.8 1 1 0.25 1 

A8 1 0 0.6 0 0.75 0.4 
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Normalization ensure that all raw scores are converted into a common, dimensionless scale so 
no single criterion can dominate the results.  

Proximity-based type: 

2C  where the 1 9k =  

12

8 9
1 0.8

5


−
= − = ,  

23

7 9
1 0.6

5


−
= − =  

4C  where the 4 8k =  

14

7 8
1 0.6667

3


−
= − = ,  

24

8 8
1 1

3


−
= − =  

Step 3: Weighted Normalized Decision Matrix.  
Compute the weighted normalized decision matrix following the Equation (4). The weights for 

the criteria are . Table 5 represents the matrix.  
 

Table 5 
The weighted normalized decision matrix of the numerical example 

Alt. C1 C2 C3 C4 C5 C6 

A1 0 0.16 0.128 0.2133 0.15 0.04 

A2 0.048 0.12 0.096 0.32 0.15 0.02 

A3 0.072 0.08 0.032 0.32 0.075 0 

A4 0.048 0.08 0 0.1067 0 0 

A5 0.12 0.2 0 0.1067 0.0375 0.03 

A6 0.072 0.2 0.128 0.32 0.075 0.04 

A7 0.096 0.16 0.16 0.32 0.0375 0.05 

A8 0.12 0 0.096 0 0.1125 0.02 

Each alternative is calculated as follows: 

For 11
0 0.12 0v =  =  

For 23
0.6 0.16 0.096v =  =  

Step 4: Determine the Positive Ideal (PIS), Negative Ideal (NIS) and Average Solution (AS). 
Determine the PIS, NIS and AS using the Equation (5), (6), and (7) respectively. Table 6 shows the 

result of it.  
 

Table 6 
The PIS, NIS, and AS for each criterion 

 C1 C2 C3 C4 C5 C6 

jS
+  0.12 0.2 0.16 0.32 0.15 0.05 

jS
−  0 0 0 0 0 0 

a

jS  0.072 0.125 0.08 0.2133 0.0797 0.025 

In this step, we calculate the maximum, minimum and average value for each criteria column. 

The result shows that in 1
C , we get 0.12

j
S
+
= , 0

j
S
−
= , and 0.072

a

j
S = . Then we proceed the same 

for other criteria.  
Step 5: Compute the Distances from the Benchmark Solutions. 

Determine the distance from the ( )i
D S

+ , ( )i
D S

− , and ( )a

i
D S  for each of the alternatives using 

Equation (8), (9), and (10). Let parameter 2p = . Table 7 shows the distance ( )i
d S

+ , ( )i
d S

− , and 

( )a

i
d S  for each alternative where we calculate it using Equation (8).  
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Table 7 

The distance ( )id S
+ , ( )id S

− , and ( )a

id S for each alternative 

Alt. ( )id S
+  ( )id S

−  ( )a

id S  

A1
 

0.1688 0.3341 0.1178 
A2

 
0.1288 0.3889 0.1312 

A3
 

0.2030 0.3473 0.1279 
A4

 
0.3401 0.1417 0.1654 

A5
 

0.2901 0.2609 0.1659 
A6

 
0.0951 0.4138 0.1398 

A7
 

0.1218 0.4083 0.1483 
A8

 
0.3857 0.1915 0.2546 

 

Calculating the distance for ( )i
d S

+ , ( )i
d S

− , and ( )a

i
d S  alternatives: 

For ( ) ( )
1

1 1

p pn

ij jj
d S v S

+

=
= −   

( )

1
2 2 2 2

1 2 2 2

0 0.12 0.16 0.2 0.128 0.16
0.1688

0.2133 0.32 0.15 0.15 0.04 0.05
d S

+
 − + − + − +
 = =
 − + − + − 

 

For ( ) ( )
1

1 1

p pn

ij jj
d S v S

−

=
= −   

( )

1
2 2 2 2

1 2 2 2

0 0 0.16 0 0.128 0
0.3341

0.2133 0 0.15 0 0.04 0
d S

+
 − + − + − +
 = =
 − + − + − 

 

For ( ) ( )
1

1 1

p pna

ij jj
d S v S

=
= −   

( )

1
2 2 2 2

1 2 2 2

0 0.072 0.16 0.125 0.128 0.08
0.1178

0.2133 0.2133 0.15 0.0797 0.04 0.025

a
d S

 − + − + − +
 = =
 − + − + − 

 

Then we apply a correction coefficient   as in Equation (9) to the distances and the results is 
shown in Table 8. 

 
Table 8 

The correction coefficient based on the ( )i
d S  

 ( )i
d S

+
 ( )i

d S
−

 ( )a

i
d S  

  0.2906 0.2720 0.1367 

 
The correction coefficient is put in the distance formula which is Equation (10) and the result is 

presented in Table 9. 
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Table 9 

The distance ( )iD S
+ , ( )iD S

− , ( )a

iD S  for each alternative 

Alt. ( )iD S
+  ( )iD S

−  ( )a

iD S  

A1 0.1771 0.3644 0.1197 
A2 0.1336 0.4300 0.1335 
A3 0.2150 0.3801 0.1301 
A4 0.3738 0.1472 0.1691 
A5 0.3146 0.2795 0.1696 
A6 0.0978 0.4603 0.1425 
A7 0.1261 0.4537 0.1513 
A8 0.4290 0.2015 0.2634 

 
The calculation for the first alternative is as follows: 

For ( ) ( ) ( )
2

2

1
0.1688 0.2906 0.1688 0.1771

i i
D S d S d S+ + +

= +  = +  =  

For ( ) ( ) ( )
2

2

1
0.3341 0.2720 0.3341 0.3644

i i
D S d S d S− − −

= +  = +  =  

For ( ) ( ) ( )
2

2

1
0.1178 0.1367 0.1178 0.1197

a a a

i i
D S d S d S= +  = +  =  

Step 6: Rank the Alternatives. 
Rank the alternative using Equation (11), parameter 0.5 = . Table 10 shows the final ranking 

result using AURA method. The alternatives are ranked in ascending order, where a lower value 
indicates a better alternative. 

 
Table 10 
Final ranking using AURA method  

Alt. Ranking Score Rank 

A1 -0.0169 4 

A2 -0.0407 3 

A3 -0.0088 5 

A4 0.0989 7 

A5 0.0512 6 

A6 -0.0550 1 

A7 -0.0441 2 

A8 0.1227 8 

Let 0.5 = ,  

( ) ( )
1

0.5 0.1771 0.3644 1 0.5 0.1197
0.0169

2
dR

 − + − 
= = −  

( ) ( )
2

0.5 0.1336 0.4300 1 0.5 0.1335
0.0407

2
dR

 − + − 
= = −  

( ) ( )
3

0.5 0.2150 0.3801 1 0.5 0.1301
0.0088

2
dR

 − + − 
= = −  

The final ranks and scores with 6 7 2 1 3 5 4 8A A A A A A A A        are shown in Figure 2. 
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Fig 2. Final ranking using AURA method 

 
The horizontal bar chart in Figure 2 above depicts the final ranking of eight alternatives by using 

the AURA method, ranking scores are plotted along the x-axis, alternatives along the y-axis and 

accompanied by rank annotations. According to the analysis, 6 7
,A A , and 2

A  are among the best 

performing alternatives and have obtained the lowest or most favorable ranking scores -0.0550, -
0.0441, and -0.0407 which suggest overall good performance. Alternatives in the middle status, such 

as 
1, 3,

A A and 5
A  show moderate performance while 4

A  and 8
A  hold the lowest ranks implying huge 

deviation from the best solution and poor performance. The spread of results in negative and positive 
values shows the major gap in performance from the alternatives. This thorough example 
demonstrates AURA’s resilience and suitability for the best alternatives. AURA offers a valuable tool 
for intricate decision-making situations requiring the evaluation and balancing of numerous 
parameters.  
 
3.2 Sensitivity Analysis 

This section examines the impact of varying parameter values on `the ranking outcomes in the 
example provided and the impact of changing weight on ranking. The calculation on this analysis is 
calculated using EXCEL Software and MATLAB. The graph and simulation are from MATLAB.   

We will demonstrate the impact of varying  in the AURA method. The trade-off between the PIS, 
NIS and AS is largely determined by the balance parameter . We can examine the stability of 
rankings and determine which alternatives are more prone to shifts in decision preferences by 
adjusting . The parameter  was set at 2 for this analysis, whereas  was varied between 0 and 0.25, 

0.5, 0.75, and 1. The ( )a

i
D S  is the main basis for rankings when  , but the ( ) ( )( )i i

D S D S
+ −
−  

are a major factor when .  Hence, middle value  offers a balanced approach. Figure 3 show 
the effect of  on rankings.  
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Fig. 3. Effect of  on Rankings 

 
Based on Figure 3, certain alternatives show notable rank fluctuations, while others stay constant 

regardless of the  value. The ranking of alternatives 5, 6, 7, and 8 varies very little, indicating that 
they are resilient to different parameter values.  Nevertheless, Alternatives 1, 2, 3, and 4 exhibit rank 
reversals, suggesting that the selection of  has a significant impact on their ranking positions. This 
observation is clearly shown in the sensitivity graph, where stable alternatives are indicated by flat 
horizontal lines and changes in ranking order are represented by crossing lines. A sensitivity to 
decision-maker preferences is highlighted by alternatives that change ranks often, underscoring the 
necessity of carefully choosing  to provide a fair evaluation. 

According to the results,  is appropriate for preserving ranking stability and guaranteeing 
a fair evaluation of both ideal and average solutions. If proximity to the best and worst options is a 
deciding factor, a higher  value such as 0.75 or 1 is better. However, a lower  value like 0 or 0.25, 
which is more risk-averse, can be suitable for a more balanced ranking strategy. The findings show 
that rankings are significantly impacted by , with certain options being more sensitive than others. 

Another sensitivity to demonstrate the impact of varying parameter  is being conducted and 
Figure 4 shows the effect of 𝑝 on ranking.  

 

 
Fig. 4. Effect of  on Rankings 
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Figure 4 shows the impact of varying parameter  in the AURA method. It is crucial since 
parameter  determines how deviations between alternatives and ideal solutions are measured. To 
evaluate the effect of  on ranks,  was varied across 1, 1.5, 2, 2.5, and 3, while the parameter  was 
set at 0.5. A smaller  value like , gives individual deviations more weight and increases the 
sensitivity of the ranking to slight variations in the criterion values. On the other hand, higher  value 
like , highlight bigger variances and lessen the impact of small variations across alternatives.  

Figure 4 shows that even though some alternatives show rank reversals, the ranks of most 
alternatives are consistent across a range of  values. Alternatives 1, 3, 4, 5, and 6 exhibit little to no 
change, indicating their resilience to changes in distance. Nevertheless, we can see changes in the 
rankings of alternatives 2, 7, and 8, with alternatives 2 and 7 moving up and down in relation to . 
These rank reversals are highlighted in the plotted sensitivity graph on Figure 2, where changes in 
ranking order are indicated by crossing lines. While alternatives with intersecting lines are more 
sensitive to various distance standards, those with flat lines in the graph show stability, indicating 
that their ranks are unaffected by changes in . 

According to these results, when 2p = , it minimizes significant ranking shifts while offering a 

balanced distance measure. It may be more suitable to use a higher  value if decision-makers want 
to highlight the differences between alternatives.  In contrast, a lower  value can be appropriate if 
a fairer comparison of deviations is desired. The findings show that while the AURA technique is 
typically not very sensitive to , rankings for some alternatives can be greatly impacted by p selection. 

Next, we perform another sensitivity analysis to determine the effect of weight variation on the 
relativity of the alternatives. Figure 5 shows the result of changing weight. 
 

 
Fig. 5. Rank Sensitivity Across Weight Scenarios 

 
Shown in Figure 5 above is the rank sensitivity of eight alternatives over five different weight 

situations namely Baseline, Equal, Emphasize on C1 & C2, Emphasize C4 and Random. The line chart 
shows distinct trends of stability and variation of alternatives as the weighting schemes vary. 

Alternatives 6
A  and 7

A  always hold first place with second spots, this is almost in all scenarios, this 

shows positive robustness and in sensitivity to weight changes. Conversely, we have the alternatives 

4
A  and 8

A  which hold consistently the lowest ranks showing poor performance, irrespective of the 
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weight configuration. Remarkably, alternatives 1 3
, ,A A  and 5

A  show moderate rank variability 

indicating that these alternatives are moderately sensitive to the prescribed weights in ranking. For 

instance, under Random weight, 1
A  is notably at the top rank, whereas under Emphasize C1 & C2, 

5
A  achieves its best performance. Such fluctuations underline the necessity of weighing decisions 

because they can really affect the benchmarking results for middle-tier options. Overall, this 
sensitivity analysis demonstrates the stability provided by AURA method in respect with consistently 
strong and weak alternatives and inherent ability of the method to identify alternatives whose 
differential performance is sensitive to preferences and weight configurations of the decision-
makers. 
 
3.3 Comparative Analysis 

In this section, we want to evaluate the effectiveness and reliability of the newly introduced AURA 
method against existing methods. To validate the results obtained by applying new AURA method in 
the illustrative example, the same problem has been solved by other existing methods such as 
COBRA, MOORA, SAW, TOPSIS, VIKOR, and WASPAS. The results obtained are presented in Table 11 
and Figure 6.  

 
Table 11 
Comparison of AURA with other MCDM methods 

Alt. AURA COBRA MOORA SAW TOPSIS VIKOR WASPAS 

A1 4 4 4 4 4 4 4 

A2 3 3 3 3 3 2 3 

A3 5 5 6 5 5 5 5 

A4 7 8 8 8 8 7 8 

A5 6 6 5 6 6 6 6 

A6 1 1 1 1 1 1 1 

A7 2 2 2 2 2 3 2 

A8
 

8 7 7 7 7 8 7 

 

 
Fig. 6. Comparison of AURA with other MCDM methods 
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Analysis of the ranking comparison amongst MCDM methods above shows that the rankings 

given by various methods are very similar. We can see that 6
A  continuously earns the rank 1 across 

all methods, demonstrating a clear trend of significant preference for this alternative during the 

decision-making process. On the other hand, 8
A  is consistently ranked among the least suitable 

options, showing that all methods concur with its weakness. These consistent rankings indicate that 
the methods largely align in their assessment criteria, reinforcing the robustness of their decision-
making frameworks. 

Although the rankings are generally consistent, there are some fluctuations, especially for 3 4
, ,A A  

and 5
A  where different methodologies produce somewhat different ranks. A very same ranking 

pattern is displayed by COBRA, SAW, and WASPAS algorithms, indicating that they use similar weight 
aggregation strategies. Nevertheless, MOORA and VIKOR add some unpredictability, particularly for 

2
A  and 7

A , where VIKOR gives 2
A  a Rank 2 instead of the Rank 3 that most other methods get.  

Furthermore, 3
A  receives Rank 6 via MOORA whereas it receives Rank 5 from most other methods, 

suggesting minor variations in the criteria used for making decisions. Although it adds subtle 
differences, the AURA method highlighted in bold in Figure 3 aligns closely with COBRA and SAW and 
reflects a slightly different weighting technique. Overall ranking trends show that although the 
majority of MCDM approaches align well, minor ranking differences may result from changes to 
method specific criteria. 

To quantify this similarity, Spearman’s rank correlation coefficient was used, and the results are 
presented in Figure 7. The average Spearman correlation coefficient for AURA method is 0.9509. This 
shows that AURA has a very high degree of complying with other MCDM methods, which supports 
the idea that the new proposed method is highly adaptable and competitive with the other methods. 

 

 
Fig. 7. Spearman Correlation Coefficient Matrix for MCDM Methods 

 

Figure 7 shows a significant degree of agreement in ranking patterns and is indicated by the 
matrix, which shows that the majority of methods have high correlations. To illustrate their 
consistency in decision-making, SAW and WASPAS with spearman’s rank correlation of 0.9995 and 
MOORA and SAW with 0.9991 have nearly identical rankings indicating that these methods adhere 
to similar ranking criteria. VIKOR (0.9966), COBRA (0.9672), TOPSIS (0.9345), WASPAS (0.9267) and 
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SAW (0.9236) show excellent positive correlations with AURA, suggesting that it generates very 
consistent ranking results with these methodologies. AURA is a stable and dependable decision 
support tool, as it appears to be strongly aligned with other MCDM methods. However, it has a bit 
lower correlation (0.9079) with MOORA in the matrix, suggesting that MOORA has a somewhat 
different weighting system or ranking structure than AURA. The minor distinctions between AURA 
and other methods demonstrate their potential versatility in evaluating options, which makes it 
helpful in situations requiring a balance between similarity and flexibility. In the end, the results 
indicate that using several MCDM techniques improves decision reliability and offers an in-depth 
evaluation method that allows for both method specific and highly aligned ranking alterations. 

 
3.4 Simulation-Based Analysis 

This sub-section examines the stability of the proposed method using a simulation-based analysis. 
3 different types of decision matrices are generated using MATLAB software to test how AURA 
performs under different conditions. Small matrix (5 x 5) meaning that the matrix has 5 alternatives 
and 5 criteria. Followed by Medium (10 x 10) and large (20 x 20). The results are presented through 
statistical measures which mean standard deviation and ranking variance in Table 12 and Table 13 
respectively, and boxplots to visualize ranking fluctuations in Figure 8. The objective is to assess 
whether AURA provides stable rankings, particularly as the problem size increases. 

 

Table 12 
Mean standard deviation 

Matrix size Mean Standard Deviation 

5X5 1.4286 

10X10 2.8868 
20X20 5.7808 

 

Table 13 
Ranking Variance 

Matrix size Variance 

5X5 2.0408 

10X10 8.3333 

20X20 33.417 

 

 
Fig. 8. Ranking stability across different matrices 
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The mean standard deviation of ranks, which quantifies the extent of fluctuation in rankings 
across trials, is shown in Table 12. The standard deviation for the small matrix, according to the data, 
is 1.4286, suggesting that rankings do not change much. The standard deviation doubles to 2.8868 
as the matrix size grows to medium, indicating a significant degree of ranking variation. The standard 
deviation for the large matrix, however, rises to 5.7808, indicating significant ranking shifts across 
different trials. This implies that as the number of alternatives and criteria rises, AURA becomes 
progressively prone to shifts in the input data. 

The ranking variance, which measures the total variation in ranking positions, is shown in Table 
13.  Rankings do not change much with only the variance of a small matrix is 2.0408 showing this. 
The variance for the medium matrix, however, increases visibly to 8.3333, indicating that the rankings 
start to diverge. The deviation grows to 33.417 in the large matrix, so AURA does not seem to be very 
good at maintaining the similarity of rankings when faced with more complicated decision making. 
Having consistency important in real-world decision-making application, this large variance implies 
that even minor differences in input values can lead to substantial changes in rank. 

The box-plot results in Figure 8 give visual confirmations of these findings. The small interquartile 
range (IQR) and whiskers in the small matrix boxplot show how the rankings hold up well through 
several trials. The medium matrix boxplot also maintains the spread fairly contained despite showing 
a greater IQR and thus greater shifts in ranking. The rankings are however much less predictable as 
the large matrix boxplot shows the largest variation with long whiskers. AURA can be volatile at a 
large-scale decision matrix; small changes in input can lead to large discrepancies in ranking as 
evidenced by the wide range of the large matrix. 

In general, the study demonstrates that the AURA method loses stability for large-scale problems, 
is rather stable for medium ones and is extremely stable for small-scale ones. AURA’s performance 
may suffer under usage on complicated decision matrices as suggested by growing variance and 
changing ranks. 

 

4. Conclusions 
An improved MCDM method called the Adaptive Utility Ranking Algorithm (AURA) is proposed in 

this study to enhance choice flexibility, computational effectiveness, and ranking consistency. Unlike 
the COBRA distance-based MCDM, AURA uses one common distance formula to reduce the rapidity 
of the ranking process while maintaining reliability and accuracy. The proposed method’s innovative 
normalization technique renders it possible that the same method will offer greater flexibility for a 
variety of decision-making situations if the optimal choice will be the middle range. 

With simulation-based analysis, comparison analysis and sensitivity analysis AURA proved reliable 
and has strong correlation with established MCDM methods. The results indicate that although there 
are some minor differences in ranking from larger scale applications, AURA is functional in small-
medium decision matrices. The ability of its output to provide credible rankings in different scenarios 
can be taken as a mark of its latent power as a tool in decision support. 

However, AURA is not without any limitations. Its operation in large and high-dimensional 
matrices is yet to be widely verified, and the reliability of ranking generated by it may fragment 
whenever the number of alternatives and criteria increase. Furthermore, the approach is slightly 
affected by parameter tuning since inappropriate parameters or normalization settings could affect 
the final scores. These limitations all point to the need for future extensions, for adaptive or self-
tuning mechanisms and more extensive testing regimes. 

Further investigation should explore AURA’s integration with real time applications, hybrid 
decision making frameworks and large data sets to further justify its scalability despite its 
improvement in computing efficiency and ranking reliability. Generally, AURA is an interesting 



International Journal of Economic Sciences 

Volume 14, Issue 1 (2025) 123-146 

143 
 

 

MCDM, which is a simple but effective substitute for handling complicated decision-making problems 
in numerous fields. 
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