Artificial Intelligence Applications and Corporate Sustainable Development: An Economic and Environmental Performance Perspective

Authors

DOI:

https://doi.org/10.31181/ijes1512026234

Keywords:

Artificial Intelligence, Corporate Sustainable Development Performance, Financial Performance, Environmental Performance

Abstract

Against the backdrop of rapid advancements in intelligent technologies and the convergence of China's "dual carbon" strategic goals, how enterprises leverage artificial intelligence to enhance economic and environmental benefits while achieving sustainable development has emerged as a critical research question. This study adopts a dual-perspective approach, examining both financial and environmental performance within the framework of sustainable development. Based on a sample of Chinese A-share listed companies from 2013 to 2023, this study employs a multi-period Difference-in-Differences model to empirically examine the impact of applications of artificial intelligence on corporate sustainable development performance, as well as the underlying mechanisms. The findings reveal: (1) Applications of artificial intelligence enhance both the financial and environmental performance of corporations, thereby improving their overall sustainable development performance. The conclusion has passed a series of robustness tests, including heterogeneity tests and double machine learning. (2) Mechanism analysis reveals that artificial intelligence influences corporate sustainable development performance through green innovation effects, efficiency enhancement effects, and information acquisition effects. The Porter Hypothesis, the Resource-Based View, and the Information Asymmetry Theory, among other theories, have been verified. (3) The promotional effect of artificial intelligence applications on sustainable development performance exhibits heterogeneity. Specifically, the promotional effect is more pronounced in non-heavily polluting enterprises, high-tech enterprises, and enterprises with senior executives possessing environmental protection backgrounds. (4) When enterprises are engaged in intense market competition, the positive relationship between artificial intelligence adoption and sustainability performance strengthens. Our findings offer valuable insights for managers and policymakers aiming to leverage AI for achieving sustainable growth.

Downloads

Download data is not yet available.

References

Schaltegger, S., & Wagner, M. (Eds.). (2017). Managing the business case for sustainability: The integration of social, environmental and economic performance. Routledge. https://doi.org/10.4324/9781351280525 DOI: https://doi.org/10.4324/9781351280525

Elkington, J. (1997). Cannibals with forks: The triple bottom line of 21st century business. Capstone. https://doi.org/10.1002/tqem.3310080106 DOI: https://doi.org/10.1002/tqem.3310080106

Friedman, M. (2007). The social responsibility of business is to increase its profits. In Corporate ethics and corporate governance (pp. 173-178). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-70818-6_14 DOI: https://doi.org/10.1007/978-3-540-70818-6_14

Porter, M. E., & Kramer, M. R. (2006). The link between competitive advantage and corporate social responsibility. Harvard Business Review, 84(12), 78-92. https://doi.org/10.1108/sd.2007.05623ead.006 DOI: https://doi.org/10.1108/sd.2007.05623ead.006

Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534. https://doi.org/10.1126/science.aap8062 DOI: https://doi.org/10.1126/science.aap8062

Agrawal, A., Gans, J., & Goldfarb, A. (Eds.). (2019). The economics of artificial intelligence: An agenda. University of Chicago Press. https://doi.org/10.7208/chicago/9780226613475.001.0001 DOI: https://doi.org/10.7208/chicago/9780226613475.001.0001

Bughin, J., Hazan, E., Ramaswamy, S., Allas, T., Dahlstrom, P., Henke, N., & Trench, M. (2017). Artificial intelligence: The next digital frontier? McKinsey Global Institute. https://www.mckinsey.com/~/media/McKinsey/Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-Artificial-Intelligence-Discussion-paper.ashx?ref=faraday-blog

Li, Y. X., Hu, Y. G., Wang, D., & et al. (2025). Painting the Future with AI: Artificial Intelligence and High-Quality Enterprise ESG Performance. Contemporary Finance & Economics, in press, 1-16. https://doi.org/10.13676/j.cnki.cn36-1030/f.20250227.001

Xu, J. Y., Shen, H. Y., & Zhou, X. B. (2024). Artificial intelligence development and corporate ESG performance. World Economy Studies, (9), 120-134+137. https://doi.org/10.13516/j.cnki.wes.2024.09.006

Zhong, W., Liu, Y., Dong, K., & Ni, G. (2024). Assessing the synergistic effects of artificial intelligence on pollutant and carbon emission mitigation in China. Energy Economics, 138, 107829. https://doi.org/10.1016/j.eneco.2024.107829 DOI: https://doi.org/10.1016/j.eneco.2024.107829

Peng, Y., & Kong, Y. (2024). The Practical approach to the ethical principles of artificial intelligence: Inspiration from German AI ethics label. Studies in Dialectics of Nature, 40(2), 89-95. https://doi.org/10.19484/j.cnki.1000-8934.2024.02.013

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116. https://academichelptoday.com/assets/documents/Artificial_Intelligence_for_the_Real_World_-_HBR.pdf

Financial Stability Board. (2024). The Financial Stability Implications of Artificial Intelligence. FSB Report. https://www.fsb.org/uploads/P14112024.pdf

Ahdadou, M., Aajly, A., & Tahrouch, M. (2024). Enhancing corporate governance through AI: a systematic literature review. Technology Analysis & Strategic Management, 1-14. https://doi.org/10.1080/09537325.2024.2326120 DOI: https://doi.org/10.1080/09537325.2024.2326120

Svetlana, N., Anna, N., Svetlana, M., Tatiana, G., & Olga, M. (2022). Artificial intelligence as a driver of business process transformation. Procedia Computer Science, 213, 276-284. https://doi.org/10.1016/j.procs.2022.11.067 DOI: https://doi.org/10.1016/j.procs.2022.11.067

George, G., Haas, M. R., & Pentland, A. (2014). Big data and management. Academy of Management Journal, 57(2), 321-326. https://doi.org/10.5465/amj.2014.4002 DOI: https://doi.org/10.5465/amj.2014.4002

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233. https://doi.org/10.1038/s41467-019-14108-y DOI: https://doi.org/10.1038/s41467-019-14108-y

IBM Institute for Business Value. (2022). The quantitative impact of AI on financial functions: Improving process quality, reducing costs, and enhancing efficiency. https://www.ibm.com/downloads/documents/cn-zh/107a02e97cc8fc76

Elliot, S. (2011). Transdisciplinary perspectives on environmental sustainability: a resource base and framework for IT-enabled business transformation. Management Quarterly, 197-236. https://doi.org/10.2307/23043495 DOI: https://doi.org/10.2307/23043495

Jin, X. Y., Zuo, C. J., Fang, M. Y., et al. (2024). Measurement Problem of Enterprise Digital Transformation:New Methods and Findings Based on Large Language Models. Economic Research Journal, 59(3), 34-53. https://doi.org/10.19602/j.chinaeconomist.2025.03.04

Zhou, J. T., Xi, Y. Q., Zhou, Y. Y., & et al. (2020). Big data, artificial intelligence, and innovation in fiscal and tax services. China Soft Science, (8), 69-77. https://doi.org/10.3969/j.issn.1002-9753.2020.08.007

Dian, J., Li, S., & Song, T. (2025). Achieving the synergy of pollution and carbon emission reductions: Can artificial intelligence applications work?. China Economic Review, 91, 102389. https://doi.org/10.1016/j.chieco.2025.102389 DOI: https://doi.org/10.1016/j.chieco.2025.102389

Wang, H. H., Tan, Q. Y., & Li, Y. (2023). Digital Technology Application, Green Innovation and Enterprise Sustainable Development Performance: The Moderating Effect of Institutional Pressure. Science & Technology Progress and Policy, 40(7), 124-135. https://doi.org/10.6049/kjjbydc.2022060734

Zhu, S. W., Liang, R., & Lv, K. J. (2024). The Impact of Artificial Intelligence and Corporate Digital Responsibility on Corporate Social Performance: Evidence Based on ESG Performance of Chinese Listed Firms. Journal of Xi'an University of Finance and Economics, 37(6), 64-79. https://doi.org/10.19331/j.cnki.jxufe.2024.06.003

Xiu, Y. M. (2025). In the era of artificial intelligence: New ideas for social development—a review of The Sociology of Artificial Intelligence. Journal of the Chinese Society of Education, (8), 125. https://kns.cnki.net/kcms2/article/abstract?v=bJ89lKU86K_-AOGndizUrZHVqUH372oamT2LAhDtnD-EIiMeUTbYaYFI5hOqUvkkeXSabdfVqAlJX0iyYr9FeZ3DcPVCMom1JSe_POCpupvWitGUBPQsZES1R6yaDSAgHR6uqdL9ASUQOk6c0j06H5hMj2QYsWqIJQ2-ez1agGDrkQrMho4nCw==&uniplatform=NZKPT&language=CHS

Djeffal, C. (2019). Sustainable development of artificial intelligence (SAID). Djeffal C: Sustainable Development of Artificial Intelligence (SAID), 4, 186-192. https://mediatum.ub.tum.de/doc/1584484/1584484.pdf

Xie, X. M., & Zhu, Q. W. (2021). How can green innovation resolve the dilemmas of "harmonious coexistence". Management World, 37(1), 128-149, 9. https://doi.org/10.19744/j.cnki.11-1235/f.2021.0009

Xie, X. M., Huo, J. G., & Wang, H. W. (2019). The relationship between green process innovation and financial performance in the manufacturing industry. Science Research Management, 40(3), 63-73. https://doi.org/10.19571/j.cnki.1000-2995.2019.03.007

Khaksar, E., Abbasnejad, T., Esmaeili, A., & Tamošaitienė, J. (2016). The effect of green supply chain management practices on environmental performance and competitive advantage: a case study of the cement industry. Technological and Economic Development of Economy, 22(2), 293-308. https://doi.org/10.3846/20294913.2015.1065521 DOI: https://doi.org/10.3846/20294913.2015.1065521

Cheng, C. C., Yang, C. L., & Sheu, C. (2014). The link between eco-innovation and business performance: a Taiwanese industry context. Journal of Cleaner Production, 64, 81-90. https://doi.org/10.1016/j.jclepro.2013.09.050 DOI: https://doi.org/10.1016/j.jclepro.2013.09.050

Seman, N. A. A., Govindan, K., Mardani, A., Zakuan, N., Saman, M. Z. M., Hooker, R. E., & Ozkul, S. (2019). The mediating effect of green innovation on the relationship between green supply chain management and environmental performance. Journal of Cleaner Production, 229, 115-127. https://doi.org/10.1016/j.jclepro.2019.03.211 DOI: https://doi.org/10.1016/j.jclepro.2019.03.211

Acemoglu, D., & Restrepo, P. (2018). The race between man and machine: Implications of technology for growth, factor shares, and employment. American Economic Review, 108(6), 1488-1542. https://doi.org/10.1257/aer.20160696 DOI: https://doi.org/10.1257/aer.20160696

Misch, F., Park, B., Pizzinelli, C., & Sher, G. (2025). Artificial Intelligence and Productivity in Europe. IMF Working Paper. https://doi.org/10.5089/9798229006057.001 DOI: https://doi.org/10.5089/9798229006057.001

Han, X. C., & Chen, F. F. (2023). Digital transformation and total factor productivity: Mediation effect based on green innovation. Journal of Harbin University of Commerce (Social Science Edition), (4), 71-87. https://kns.cnki.net/kcms2/article/abstract?v=fvwDbTJIyzTGjTxRtZguLhxqx3M_deXG88MFFHhrqc4MVXvV_J8Ca9q2W1AJY6ElhtKgHRXS0vA-fEhsvjkbkzzAMO6G-yJYEyZ-y_FySJftyt_99M8e9fkbbO5DcJlZjo_29EHa6X0HY8CajUAFVH8K2WpryI4aMwU4X19nAhKYF6phTe2bAw==&uniplatform=NZKPT&language=CHS

Ghisetti, C., & Quatraro, F. (2017). Green technologies and environmental productivity: A cross-sectoral analysis of direct and indirect effects in Italian regions. Ecological Economics, 132, 1-13. https://doi.org/10.1016/j.ecolecon.2016.10.003

Zhang, Z. B., & Ou, L. (2024). Is service-oriented manufacturing beneficial for enhancing supply chain resilience? Journal of Hunan University of Science and Technology (Social Science Edition), 27(4), 63-72. https://doi.org/10.1016/j.ecolecon.2016.10.003 DOI: https://doi.org/10.1016/j.ecolecon.2016.10.003

Han, E., Yin, D., & Zhang, H. (2023). Bots with feelings: Should AI agents express positive emotion in customer service? Information Systems Research, 34(3), 1296-1311. https://doi.org/10.1287/isre.2022.1179 DOI: https://doi.org/10.1287/isre.2022.1179

Yang, S. P., & Yu, L. S. (2023). Opportunities and Challenges Brought by ChatGPT-based Generative AI to Tax Administration. Taxation Research, (6), 16-20. https://doi.org/10.19376/j.cnki.cn11-1011/f.2023.06.013

Liu, S., & Cao, Y. J. (2025). Digital Carbon Neutralization: An Empirical Study on the Dual Effects of Artificial Intelligence in Promoting Industrial Carbon Reduction. Journal of Jiangsu University (Social Science Edition), 27(2), 26-39. https://doi.org/10.13317/j.cnki.jdskxb.2025.12

Edwards, J. S., Duan, Y., & Robins, P. C. (2000). An analysis of expert systems for business decision making at different levels and in different roles. European Journal of Information Systems, 9(1), 36-46. https://doi.org/10.1057/palgrave.ejis.3000344 DOI: https://doi.org/10.1057/palgrave.ejis.3000344

Richardson, A. J., & Welker, M. (2001). Social disclosure, financial disclosure and the cost of equity capital. Accounting, Organizations and Society, 26(7-8), 597-616. https://doi.org/10.1016/S0361-3682(01)00025-3 DOI: https://doi.org/10.1016/S0361-3682(01)00025-3

Seligsohn, D., Liu, M., & Zhang, B. (2018). The sound of one hand clapping: Transparency without accountability. Environmental Politics, 27(5), 804-829. https://doi.org/10.1080/09644016.2018.1452522 DOI: https://doi.org/10.1080/09644016.2018.1452522

Arowoshegbe, A. O., Emmanuel, U., & Gina, A. (2016). Sustainability and triple bottom line: An overview of two interrelated concepts. Igbinedion University Journal of Accounting, 2(16), 88-126. https://www.researchgate.net/publication/322367106

Jiang, W., Chai, H., Shao, J., & Feng, T. (2018). Green entrepreneurial orientation for enhancing firm performance: A dynamic capability perspective. Journal of Cleaner Production, 198, 1311-1323. https://doi.org/10.1016/j.jclepro.2018.07.104 DOI: https://doi.org/10.1016/j.jclepro.2018.07.104

Mer, A., & Virdi, A. S. (2025). The influence of artificial intelligence on personal and corporate finance: A comprehensive literature review with prospects for future research. Financial Landscape Transformation: Technological Disruptions, 253-268. https://doi.org/10.1108/978-1-83753-750-120251014 DOI: https://doi.org/10.1108/978-1-83753-750-120251014

Acemoglu, D., & Restrepo, P. (2019). Artificial Intelligence, Automation, and Work: Daron Acemoglu and Pascual Restrepo. In The economics of artificial intelligence: An agenda. University of Chicago Press. https://doi.org/10.7208/chicago/9780226613475.003.0008 DOI: https://doi.org/10.3386/w24196

Magazzino, C., Mele, M., Morelli, G., & Schneider, N. (2021). The nexus between information technology and environmental pollution: Application of a new machine learning algorithm to OECD countries. Utilities Policy, 72, 101256. https://doi.org/10.1016/j.jup.2021.101256 DOI: https://doi.org/10.1016/j.jup.2021.101256

Endrikat, J., Guenther, E., & Hoppe, H. (2014). Making sense of conflicting empirical findings: A meta-analytic review of the relationship between corporate environmental and financial performance. European Management Journal, 32(5), 735-751. https://doi.org/10.1016/j.emj.2013.12.004 DOI: https://doi.org/10.1016/j.emj.2013.12.004

Alexopoulos, I., Kounetas, K., & Tzelepis, D. (2018). Environmental and financial performance. Is there a win-win or a win-loss situation? Evidence from the Greek manufacturing sector. Journal of Cleaner Production, 197, 1275-1283. https://doi.org/10.1016/j.jclepro.2018.06.302 DOI: https://doi.org/10.1016/j.jclepro.2018.06.302

Zang, J., & Li, Y. (2017). Technology capabilities, marketing capabilities, and innovation ambidexterity. Technology Analysis & Strategic Management, 29(1), 23-37. https://doi.org/10.1080/09537325.2016.1194972 DOI: https://doi.org/10.1080/09537325.2016.1194972

Wu, Z., Zhai, Y., & Zeng, Y. (2024). Corporate sustainability performance assessment under the low carbon city pilot policy framework. Shanghai Journal of Economics, (11), 53-64+91. https://doi.org/10.19626/j.cnki.cn31-1163/f.2024.11.006

Yao, J., Zhang, K., Guo, L., & Feng, X. (2024). How does artificial intelligence improve firm productivity? Based on the perspective of labor skill structure adjustment. Journal of Management World, 40(2), 101-116. https://doi.org/10.19744/j.cnki.11-1235/f.2024.0018

Acemoglu, D., Anderson, G., Beede, D. N., Buffington, C., Childress, E. E., Dinlersoz, E. M., ... & Zolas, N. (2022). *Automation and the workforce: A firm-level view from the 2019 annual business survey* (Vol. 30659). National Bureau of Economic Research. https://doi.org/10.3386/w30659 DOI: https://doi.org/10.3386/w30659

Mann, K., & Püttmann, L. (2023). Benign effects of automation: New evidence from patent texts. Review of Economics and Statistics, 105(3), 562-579. https://doi.org/10.1162/rest_a_01083 DOI: https://doi.org/10.1162/rest_a_01083

Yu, S. L., & Shi, H. (2025). The impact of artificial intelligence policies on corporate ESG performance: Empirical evidence from the national pilot zones for artificial intelligence innovation and application. Western Forum, 35(4), 52-67. https://doi.org/10.3969/j.issn.1674-8131.2025.04.004

Wang, W., Wang, L., Sun, Z., & Ma, D. (2025). Can carbon emission trading improve corporate sustainability? An analysis of green path and value transformation effect of pilot policy. Clean Technologies and Environmental Policy, 27(3), 1505-1520. https://doi.org/10.1007/s10098-024-02910-2 DOI: https://doi.org/10.1007/s10098-024-02910-2

Sun, Y. (2024). The impact of integrated reporting approach on sustainability performance of state-owned enterprises. Environment, Development and Sustainability, 1-36. https://doi.org/10.1007/s10668-024-05633-y DOI: https://doi.org/10.1007/s10668-024-05633-y

Jin, X. Y., & Zhang, W. F. (2023). Artificial intelligence and enterprise pollution reduction: Environmental effects of intelligent governance. China Population, Resources and Environment, 33, 138-145. https://doi.org/10.12062/cpre.20230334

Feng, W. X. (2024). Artificial Intelligence and Corporate Financial Asset Allocation: Empirical Evidences from the National AI Innovation and Application Pioneer Zone. Contemporary Finance & Economics, (4), 141. https://doi.org/10.13676/j.cnki.cn36-1030/f.20240219.001

Levinsohn, J., & Petrin, A. (2003). Estimating production functions using inputs to control for unobservables. The Review of Economic Studies, 70(2), 317-341. https://doi.org/10.1111/1467-937X.00246 DOI: https://doi.org/10.1111/1467-937X.00246

Zhong, J., Ding, Y. F., Ling, Z. A., & Wei, Y. J. (2025). AI Applications and Diversification of Enterprise Customer Configuration: A Quasi-natural Experiment Based on AI Innovation Application Pilot Zone. Foreign Economics & Management, 47(06), 18-35. https://doi.org/10.16538/j.cnki.fem.20241122.301

Levinson, A. (1996). Environmental regulations and manufacturers' location choices: Evidence from the Census of Manufactures. Journal of Public Economics, 62(1-2), 5-29. https://doi.org/10.1016/0047-2727(96)01572-1 DOI: https://doi.org/10.1016/0047-2727(96)01572-1

Li, L., & Tao, F. (2012). Selection of optimal environmental regulation intensity for Chinese manufacturing industry—Based on the green TFP perspective. China Industrial Economics, 5(5), 70-82. https://doi.org/10.19581/j.cnki.ciejournal.2012.05.006

Kale, J. R., & Loon, Y. C. (2011). Product market power and stock market liquidity. Journal of Financial Markets, 14(2), 376-410. https://doi.org/10.1016/j.finmar.2010.10.003 DOI: https://doi.org/10.1016/j.finmar.2010.10.003

Jacobson, L. S., LaLonde, R. J., & Sullivan, D. G. (1993). Earnings losses of displaced workers. The American Economic Review, 685-709. https://doi.org/10.17848/wp92-11 DOI: https://doi.org/10.17848/wp92-11

Li, J., Wang, K., & Mei, Y. (2024). State-owned capital participation and corporate environmental, social, and governance performance: Evidence from Chinese private firms. Journal of the Knowledge Economy, 1-28. https://doi.org/10.1007/s13132-024-02432-8 DOI: https://doi.org/10.1007/s13132-024-02432-8

Nunn, N., & Qian, N. (2014). US food aid and civil conflict. American Economic Review, 104(6), 1630-1666. https://doi.org/10.1257/aer.104.6.1630 DOI: https://doi.org/10.1257/aer.104.6.1630

Wang, J., Sun, H., & Liao, Z. L. (2025). Study on the Mechanisms of Artificial Intelligence Technology Empowering Dual Carbon Practice Performance. Science & Technology Progress and Policy, 1-13. https://link.cnki.net/urlid/42.1224.G3.20250723.1005.004

Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics, 225(2), 254-277. https://doi.org/10.1016/j.jeconom.2021.03.014 DOI: https://doi.org/10.1016/j.jeconom.2021.03.014

Borusyak, K., Hull, P., & Jaravel, X. (2022). Quasi-experimental shift-share research designs. The Review of Economic Studies, 89(1), 181–213. https://doi.org/10.1093/restud/rdab030 DOI: https://doi.org/10.1093/restud/rdab030

Bodory, H., Huber, M., & Lafférs, L. (2022). Evaluating (weighted) dynamic treatment effects by double machine learning. The Econometrics Journal, 25(3), 628-648. https://doi.org/10.1093/ectj/utac018 DOI: https://doi.org/10.1093/ectj/utac018

Zhang, X. E., & Yu, Y. B. (2025). The impact of digital transformation on the sustainable performance of heavy-polluting enterprises. Science & Technology Progress and Policy, 42(2), 82–92. https://doi.org/10.6049/kjjbydc.2024050176

Chao, X. J., & Shen, L. (2025). The Impact of Artificial Intelligence Technology on Manufacturing Enterprises' Green Innovation Efficiency from the Perspective of Innovation Value Chain. Economic Perspectives, (4), 50–67.

Jiang, T. (2022). Mediating Effects and Moderating Effects in Causal Inference. China Industrial Economics, 5, 100–120. https://doi.org/10.3969/j.issn.1006-480X.2022.05.007

Wang, Y., Liu, Y., & Chen, X. H. (2025). Green technology innovation, ESG ratings and corporate sustainable performance: Empirical evidence from listed semiconductor companies in China. International Review of Economics & Finance, 99, 104061. https://doi.org/10.1016/j.iref.2025.104061 DOI: https://doi.org/10.1016/j.iref.2025.104061

Acemoğlu, D., & Restrepo, P. (2016). The race between machines and humans: Implications for growth, factor shares and jobs. https://doi.org/10.3386/w22252 DOI: https://doi.org/10.3386/w22252

Deng, B., & Guo, J. H. (2011). An analysis of the dynamic impact effect of technological progress on sustainable development. Enterprise Economy, 30(2), 9-12. https://doi.org/10.13529/j.cnki.enterprise.economy.2011.02.008

Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434 DOI: https://doi.org/10.1016/j.im.2021.103434

Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924. https://doi.org/10.1108/BPMJ-10-2019-0411 DOI: https://doi.org/10.1108/BPMJ-10-2019-0411

Xue, Y., Jiang, C., Guo, Y., Liu, J., Wu, H., & Hao, Y. (2022). Corporate social responsibility and high-quality development: Do green innovation, environmental investment and corporate governance matter?. Emerging Markets Finance and Trade, 58(11), 3191-3214. https://doi.org/10.1080/1540496X.2022.2034616 DOI: https://doi.org/10.1080/1540496X.2022.2034616

Gröger, J., Behrens, F., Gailhofer, P., & Hilbert, I. (2025). Environmental impacts of artificial intelligence (Prepared for Greenpeace e.V.). Öko-Institut Consult GmbH. https://www.greenpeace.de/publikationen/umweltauswirkungen-kuenstlicher-intelligenz

Wang, H., Lin, W., & Xie, R. (2022). Environmental backgrounds of executives and green investor entry. Journal of Quantitative & Technological Economics, 39(12), 173-194. https://doi.org/10.13653/j.cnki.jqte.2022.12.009

Singla, A., Sukharevsky, A., Yee, L., Chui, M., & Hall, B. (2025). The state of AI: How organizations are rewiring to capture value. McKinsey & Company. https://sitic.org/wordpress/wp-content/uploads/The-state-of-AI-How-organizations-are-rewiring-to-capture-value.pdf

Xiao, H. J., Shen, H. T., & Zhou, Y. K. (2024). Customer Digitalization,Supplier ESG Performance and Supply Chain Sustainability. Economic Research Journal, 59(03), 54-73. https://kns.cnki.net/kcms2/article/abstract?v=fvwDbTJIyzQYU_xBvcymYH_6sBD2StY0pU_AQAqx3YIPWKGh4pucGyOcGsocZrJTOhl-bBu9Y3mvNZa2zxNL4jSe5zFk42muYJgLv6xYBscLjjIRffoDjjt-l3k6z9rggRJjoqQDROTEAT1oOFyBEYhryjQbQXIFT1TgKwYPPp3XrjsL84ZZfA==&uniplatform=NZKPT&language=CHS

Wang, A. P., Chen, M., & Hu, H. F. (2024). Impact of Pilot Zones for Green Finance Reform and Innovations on Corporate Green Transformation:An Analysis Based on Strategic Orientation and Innovation Actions of Enterprises. Nankai Economic Studies, (12), 187-205. https://doi.org/10.14116/j.nkes.2024.12.011

Meng, M. M., Tan, X. Y., Liu, S. R., et al. (2023). Research on the Impact of ESG Performance on Green Innovation. Journal of Technology Economics, 42(07), 13-24. https://doi.org/10.3969/j.issn.1002-980X.2023.07.003

Xie, J., Hou, Y. R., & Huang, J. (2025). Short-term Inhibition Effect of Market Integration on Enterprises' Long-term Investment And the Solution of That. China Business and Market, 39(08), 98-112. https://doi.org/10.14089/j.cnki.cn11-3664/f.2025.08.008

Rasheed, M. Q., Yuhuan, Z., Haseeb, A., Ahmed, Z., & Saud, S. (2024). Asymmetric relationship between competitive industrial performance, renewable energy, industrialization, and carbon footprint: Does artificial intelligence matter for environmental sustainability?. Applied Energy, 367, 123346. https://doi.org/10.1016/j.apenergy.2024.123346 DOI: https://doi.org/10.1016/j.apenergy.2024.123346

Zhou, Q. (2021). The Formative Mechanism of Journalistic Credibility in the Context of Digital Media Consumption. Journalism Research, (09), 40-58, 118. https://doi.org/10.20050/j.cnki.xwdx.2021.09.005

Published

2025-10-29

Issue

Section

Articles

How to Cite

Sun, H., & Zhu, R. (2025). Artificial Intelligence Applications and Corporate Sustainable Development: An Economic and Environmental Performance Perspective. International Journal of Economic Sciences, 15(1), 1-29. https://doi.org/10.31181/ijes1512026234